[1]
G. Aubert. and P. Kornprobst, “Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations 2nd ed. Berlin, Germany: Springer-Verlag, 2006.
[2]
M. Bertalmío, G. Sapiro, V. Caselles and C. Ballester, “Image Inpainting,” In Proceedings of SIGGRAPH, 2000, pp. 417-424.
doi:10.1145/344779.344972
[3]
M. Bertalmio, A. Bertozzi and G. Sapiro, “Navier-Stokes, Fluid-Dynamics, and Image and Video Inpainting,” In Proc. of IEEE-CVPR, 2001, pp. 355-362.
[4]
T. Chan and J. Shen, “Mathematical Models of Local Non-texture Inpaintings,” SIAM Journal of Applied Mathematics, Vol. 62, No. 3, 2002, pp. 1019-1043.
doi:10.1137/S0036139900368844
[5]
L. Rudin, S. Osher and E. Fatemi, “Nonlinear Total Variation Based Noise Removal Algorithms,” Physica D:Nonlinear Phenomena, Vol. 60, No. 1/4, 1992, pp. 259-268.
doi:10.1016/0167-2789(92)90242-F
[6]
A. Bertozzi, S. Esedoglu and A. Gillette, “Inpainting of Binary Images Using the Cahn-Hilliard Equation,” IEEE Trans. Image Processing, Vol. 16, No. 1, 2007, pp. 285-291.
doi:10.1109/TIP.2006.887728
[7]
M. Nitzberg, D. Mumford and T. Shiota, Filering, segmentation, and depth, LNCS, Vol. 662, Berlin, Germany: Springer-Verlag, 1993.
http://dx.doi.org/10.1007/3-540-56484-5
[8]
T. Chan and J. Shen, “Non-texture Inpainting by Curvature-driven Diffusions (CDD),” Journal of Visual Communication and Image Representation., Vol. 12, No. 4, 2001, pp. 436-449.
doi:10.1006/jvci.2001.0487
[9]
T. Chan, S. Kang and J. Shen, “Euler's Elastica and Curvature-based Image Inpainting,” SIAM J. Appl. Math., Vol. 63, No. 2, 2002, pp. 564-592.
[10]
S. Esedoglu and J. Shen, “Digital Inpainting Based on the Mumford-Shah-Euler Image Model,” European Journal of Applied Mathematics, Vol. 13, No. 4, 2002, pp. 353-370.
doi:10.1017/S0956792502004904
[11]
X. Tai, J. Hahn and G. Chung, “A Fast Algorithm for Euler’s Elastica Model Using Augmented Lagrangian Method,” SIAM J. Appl. Math., Vol. 4, No. 1, 2011, pp. 313-344.
[12]
A. Efros and T. Leung, “Texture Synthesis by NonparaMetric Sampling,” In Proc. of the IEEE ICCV, 1999, pp. 1033-1038.
[13]
A. Criminisi, P. Pérez, and K. Toyama, “Region Filling and Object Removal by Exemplar-based Inpainting,” IEEE Transactions on Image Processing, Vol. 13, No. 9, 2004, pp. 1200-1212.
doi:10.1109/TIP.2004.833105
[14]
Z. Xu and S. Jian, “Image Inpainting by Patch Propagation Using Patch Sparsity,” IEEE Transactions on Image Processing, Vol. 19, No. 3, 2010, pp. 1153-1165.
[15]
P. Arias, V. Caselles, G. Facciolo and G. Sapiro, “A Variational Framework for Exemplar-based Image Inpainting,” International Journal of Computer Vision, Vol. 93, No. 3, 2011, pp. 1-29.
doi:10.1007/s11263-010-0418-7
[16]
P. Arias, V. Caselles and G. Facciolo, “Analysis of a Variational Framework for Exemplar-Based Image Inpainting,” SIAM Multiscale Modeing Simulation, Vol. 10, No. 2, 2012, pp. 473-514.
doi:10.1137/110848281
[17]
M. Bertalmio, L. Vese, G. Sapiro and S. Osher, “Simultaneous Structure and Texture Image Inpainting,” IEEE Transactions Image Processing, Vol. 12, No. 8, 2003, pp. 882-889.
doi:10.1109/TIP.2003.815261
[18]
J. Cai, R. Chan and Z. Shen, “A Framelet-based Image Inpainting Algorithm,” Applied and Computational Harmonic Analysis, Vol. 24, No. 2, 2008, pp. 131-149.
doi:10.1016/j.acha.2007.10.002
[19]
J. Cai, R. Chan and Z. Shen, “Simultaneous Cartoon and Texture Inpainting,” Inverse Problems and Imaging, Vol. 4, No. 3, 2010, pp. 379-395.
doi:10.3934/ipi.2010.4.379
[20]
A. Buades, B. Coll and J. Morel, “A Review of Image Denoising Algorithms, with a New One,” SIAM Multiscale Modeling Simulation, Vol. 4, No. 2, 2005, pp. 490-530.
doi:10.1137/040616024
[21]
G. Gilboa and S. Osher, “Nonlocal Operators with Applications to Image Processing,” SIAM Multiscale Modeling Simulation, Vol. 7, No. 3, 2008, pp. 1005-1028.
doi:10.1137/070698592
[22]
G. Peyré, S. Bougleux and L. Cohen, “Non-local Regularization of Inverse Problems,” LNCS, Vol. 5304, 2008, pp. 57-68.
[23]
Y. Lou, X. Zhang, S. Osher and A. Bertozzi, “Image recovery via non local operators,” Journal of Science Computer, Vol. 42, No. 2, 2010, pp. 185-197.
[24]
X. Zhang, M. Burger, X. Bresson and S. Osher, “Bregmanized Nonlocal Regularization for Deconvolution and Sparse Reconstruction,” SIAM Journal Imag. Science, Vol. 3, No. 3, 2010, pp. 253-276.
[25]
W. Ma and S. Osher, “A TV Bregman iterative model of Retinex theory,” Univ. California, Los Angeles, UCLA CAM Rep. 10-13, 2010.
[26]
D. Zosso, G. Tran and S. Osher, “A Unifying Retinex Model Based on Non-local Differential Operators,” Univ. California, Los Angeles, UCLA CAM Rep. 13-03, 2013.
[27]
M. Jung, X. Bresson, T. F. Chan and L. A. Vese. “Nonlocal Mumford-Shah Regularizers for Color Image Restoration,” IEEE Transactions on Image Processing, Vol. 20, No. 6, 2011, pp. 1583-1598.
doi:10.1109/TIP.2010.2092433
[28]
D. Mumford and J. Shah, “Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems,” CPAM, Vol. XLII, 1989, pp. 577-685.
[29]
P. Blomgren and T. Chan, “Color TV: Total Variation Methods for Restoration of Vector-Valued Images,” IEEE Transactions on Image Processing, Vol. 7, No. 3, 1998, pp. 304-309.
doi:10.1109/83.661180
[30]
J. Yang, W. Yin, Y. Zhang and Y. Wang, “A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration,” SIAM Journal on Imaging Sciences, Vol. 2, No. 2, 2009, pp. 569-592.
doi:10.1137/080730421
[31]
Y. Yu, Z. Pan, W. Wei and J. Jiang, “Edge Preserving of Some Variational Models for Vectorial Image Denoising,” Jounal of Graphics and Images, Vol. 16, No. 12, 2011, pp. 2223-2230.
[32]
T. Goldstein and S. Osher, “The Split Bregman Algorithm for L1 Regularized Problems,” SIAM Journal on Imaging Sciences, Vol. 2, No. 2, 2009, pp. 323-343.
doi:10.1137/080725891
[33]
Q. Wang, Z. Pan, W. Wei, Z. Zhang, and C. Wang , “The Generalized MTV-L1 and its Split Bregman Algorithm for Noise Removal of Color Images with Textures,” in The Chn. Conf. Pattern Recognition (CCPR). 2010, pp. 1-6.