• OpenAccess
  • Template Matching using Statistical Model and Parametric Template for Multi-Template  [CSIP 2013]
  • DOI: 10.4236/jsip.2013.43B009   PP.52 - 57
  • Author(s)
  • Chin-Sheng Chen, Jian-Jhe Huang, Chien-Liang Huang
  • This paper represents a template matching using statistical model and parametric template for multi-template. This algorithm consists of two phases: training and matching phases. In the training phase, the statistical model created by principal component analysis method (PCA) can be used to synthesize multi-template. The advantage of PCA is to reduce the variances of multi-template. In the matching phase, the normalized cross correlation (NCC) is employed to find the candidates in inspection images. The relationship between image block and multi-template is built to use parametric template method. Results show that the proposed method is more efficient than the conventional template matching and parametric template. Furthermore, the proposed method is more robust than conventional template method.

  • Multi-Template; Template Matching; Parametric Template; Normalized Cross Correlation; Principal Component Analysis; Statistical Model
  • References
  • [1]
    D. M. Tsai and C. T. Lin, “Fast Normalized Cross Correlation for Defect Detection,” Pattern Recognition Letters, Vol. 24, No. 15, 2003, pp. 2625-2631.
    K. Tanaka, M. Sano, S. Ohara and M. Okudaira, “A Parametric Template Method and Its Application to Robust Matching,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head Island,13-15 June, 2000, pp. 620-627.
    Y. H. Lin, C. H. Chen and C. C. Wei, “New Method for Subpixel Image Matching with Rotation Invariance by Combining the Parametric Template Method and the Ring Projection Transform Process,” Optical Engineering, Vol. 45, No. 6, 2006.
    Y. H. Lin and C. H. Chen, “Template Matching Using the Parametric Template Vector with Translation, Rotation and Scale Invariance,” Pattern Recognition, Vol. 41, No. 7, 2008, pp. 2413-2421.
    M. Bukovec, Z. Spiclin, F. Pernus and B. Likar, “Automated Visual Inspection of Imprinted Pharmaceutical Tablets,” Measurement Science and Technology, Vol. 18, No. 9, 2007, pp. 2921-2930.
    M. Bukovec, Z. Spiclin, F. Pernus and B. Likar, “Geometrical and Statistical Visual Inspection of Imprinted Tablets,” Proceedings of IAPR Conference on Machine Vision Applications, Tokyo, 16-18 May 2007, pp. 412-415.
    M. Mozina, D. Tomazevic, F. Pernus and B. Likar, “Automated Visual Inspection of Imprint Quality of Pharmaceutical Tablets,” Machine Vision and Applications, Vol. 24, No. 1, 2013, pp. 63-73.
    I. T. Jolliffe, “Principal Component Analysis,” Springer, New York, 1986.

Engineering Information Institute is the member of/source content provider to