• OpenAccess
  • Existence of Periodic Solutions for Neutral-Type Neural Networks with Delays on Time Scales  [CET 2013]
  • DOI: 10.4236/jamp.2013.14001   PP.1 - 5
  • Author(s)
  • Zhenkun Huang, Jinxiang Cai
  • In this paper, we employ a fixed point theorem due to Krasnosel’skii to attain the existence of periodic solutions for neutral-type neural networks with delays on a periodic time scale. Some new sufficient conditions are established to show that there exists a unique periodic solution by the contraction mapping principle.

  • Neutral-Type; Neural Networks; On Time Scales; Periodic Solution
  • References
  • [1]
    C. J. Cheng, T. L. Liao, J. J. Yan and C. C. Hwang, “Globally Asymptotic Stability of a Class of Neutral-Type Neural Networks with Delays,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 36, No. 5, 2006, pp. 1191-1195.
    J. H. Park, O. M. Kwon and S. M. Lee, “LMI Optimiza- tion Approach on Stability for Delayed Neural Network of Neutral-Type,” Applied Mathematics and Computation, Vol. 196, No. 1, 2008, pp. 224-236.
    H. G. Zhang, Z. W. Liu and G. B. Huang, “Novel Delay-Dependent Robust Stability Analysis for Switched Neutral-Type Neural Networks with Time-Varying Delays via SC Technique,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 40, No. 6, 2010, pp. 1480-1491.
    R. Samli and S. Arik, “New Results for Global Stability of a Class of Neutral-Type Neural Systems with Time Delays,” Applied Mathematics and Computation, Vol. 210, No. 2, 2009, pp. 564-570.
    P. Rakkiyappan and P. Balasubramaniam, “New Global Exponential Stability Results for Neutral Type Neural Networks with Distributed Time Delays,” Neurocomput ing, Vol. 71, No. 4-6, 2008, pp. 1039-1045.
    Y. N. Raffoul, “Stability in Neutral Nonlinear Differential Equations with Functional Delays Using Fixed Point Theory,” Mathematical and Computer Modelling, Vol. 40, No. 7-8, 2004, pp. 691-700.
    W. Kelley and A. Peterson, “Difference Equations: An Introduction with Applications,” Harcourt Academic Press, San Diego, 2001.
    S. Mohamad, “Global Exponential Stability in Continuous-Time and Discrete-Time Delayed Bidirectional Neural Networks,” Physica D: Nonlinear Phenomena, Vol. 159, No. 3-4, 2001, pp. 233-251.
    Z. Huang, Y. Xia and X. Wang, “The Existence of k-Almost Periodic Sequence Solutions of Discrete Time Neural Networks,” Nonlinear Dynamics, Vol. 50, No. 1-2, 2007, pp. 13-26.
    M. Bohner and A. Peterson, “Dynamic Equations on Time Scales,” An Introduction with Applications, Birkhauser, Boston, 2001.
    M. Bohner and A. Peterson, “Advances in Dynamic Equations on Time Scales,” Birkhauser, Boston, 2003.
    A. P. Chen and F. L. Chen, “Periodic Solution to BAM Neural Network with Delays on Time Scales,” Neuro-computing, Vol. 73, No. 1-3, 2009, pp. 274-282.
    Y. K. Li, X. R. Chen and L. Zhang, “Stability and Existence of Periodic Solutions to Delayed Cohen-Grossberg BAM Neural Networks with Impulses on Time Scales,” Neu-rocomputing, Vol. 72, No. 7-8, 2009, pp. 1621-1630.
    A. Ardjouni and A. Djoudi, “Existence of Periodic Solutions for Nonlinear Neutral Dynamic Equations with Variable Delay on a Time Scale,” Communication in Nonli-near Science and Numerical Simulation, Vol. 17, No. 7, 2012, pp. 3061-3069.
    E. R. Kaufmann and Y. N. Raffoul, “Periodic Solutions for a Neutral Nonlinear Dynamical Equation on a Time Scale,” Journal of Mathematical Analysis and Applications, Vol. 319, No. 1, 2006, pp. 315-325.
    D. R. Smart, “Fixed Points Theorems,” Cambridge University Press, Cambridge, UK, 1980.
    K. Gopalsamy, “Leakage delays in BAM,” Journal of Mathematical Analysis and Applications, Vol. 325, No. 2, 2007, pp. 1117-1132.

Engineering Information Institute is the member of/source content provider to