[1]
American Diabetes Association, "Standards of Medical Care in Diabetes – 2012,” Diabetes Cares, Vol. 35, No. 2, 2012, pp. S11-63.
[2]
F. M. Hendriks, D. Brokken, C. W. J. Oomens, F. P. T. Baaijens and J. B. A. Horsten, “Mechanical Properties of Different Layers of Human Skin,” Philips Research Laboratories, Eindhoven, 2000.
[3]
N. Oliver, C. Toumazou, A. Cass and D. G. Johnston, "Glucose Sensors: A Review of Current and Emerging Technology,” Diabetic Medicine, Vol. 26, No. 3, 2009, pp. 197-210.
doi:10.1111/j.1464-5491.2008.02642.x
[4]
A. Penfornis, E. Personeni and S. Borot, “Evolution of Devices in Diabetes Management,” Diabetes Technology and Therapeutics, Vol. 13, No. 4, 2011, pp. S93-101.
[5]
L. Hoeks, W. Greven and H. d. Valk, “Real-Time Continuous Glucose Monitoring System for Treatment of Diabetes: A Systematic Review,” Diabetic Medicine, Vol. 28, No. 2, 2001, pp. 386-94.
doi:10.1111/j.1464-5491.2010.03177.x
[6]
G. Gattiker, K. Kaler and M. Mintchev, “Electronic Mosquito: Designing a Semi-Invasive Microsystem for Blood Sampling, Analysis and Drug Delivery Applications,” Microsysemt Technologies, Vol. 12, No. 1, pp. 44-51, 2005.
doi:10.1007/s00542-005-0015-9
[7]
F. Martini, “Fundamentals of Anatomy & Physiology,”Upper Saddle River, N. J.: Prentice Hall, 2001.
[8]
A. El-Laboudi, N. S. Oliver, A. Cass and D. Johnston, “Use of Microneedle Array Devices for Continuous Glucose Monitoring: A Review,” Diabetes Technology & Therapeutic, Vol. 15, No. 1, 2013, pp. 101-115.
doi:10.1089/dia.2012.0188
[9]
A. Hudson, “Notes on Piercing Mouthparts of Three Species of Mosquitoes Viewed with the Scanning Electron Microscope,” The Canadian Entomologist, Vol. 102, No. 4, 1970, pp. 501-509.
doi:10.4039/Ent102501-4
[10]
J. C. Jones and D. R. Pilitt, "Blood-feeding Behavior of Adult Aedes Aegypti Mosquitoes," Biology Bulletin, Vol. 145, No. 1, 1973, pp. 127-139.
doi:10.2307/1540353
[11]
M. K. Ramasubramanian, O. M. Barham and V. Swaminathan, “Mechanics of a Mosquito Bite with Applications to Microneedle Design,” Bioinspiration & Biomimetics, Vol. 3, No. 4, 2008, pp. 1-10.
doi:10.1088/1748-3182/3/4/046001
[12]
P. Kashin, “Electronic Recording of the Mosquito Bite,” J. Insect Physiol, Vol. 12, No. 3, 1966, pp. 281-286.
doi:10.1016/0022-1910(66)90143-0
[13]
H. Izumi, M. Suzuki, S. Aoyagi and T. Kanzaki, “Realistic Imitation of Mosquito’s Proboscis: Electrochemically etched Sharp and Jagged Needles and Their Cooperative Inserting Motion,” Sensors and Actuators A, Vol. 165, No. 1, 2011, pp. 115-123.
doi:10.1016/j.sna.2010.02.010
[14]
B. H. Kim, H. K. Kim and S. J. Lee, “Experimental Analysis of the Blood-sucking Mechanism of Female Mosquitoes,” The Journal of Experimental Biology, Vol. 214, No. 7, 2011, pp. 1163-1169.
doi:10.1242/jeb.048793
[15]
“Hypodermic Needle Gauge Chart,” TED PELLA, Inc, [Online]. Available:
http://www.tedpella.com/company_html/needlegauge.htm. [Accessed 12 March 2013].
[16]
M. Gestel and V. Place, “Drug Delivery Device,” United States of America Patent 3,964,482, 1976.
[17]
H. J. G. E. Gardeniers, R. Luttge, E. J. W. Berenschot, M. J. d. Boer, S. Y. Yeshurun, M. Hefetz, R. V. Oever and A. V. D. Berg, “Silicon Micromachined Hollow Microneedles for Transdermal Liquid Transport,” Journal of Microelectromechanical Systems, Vol. 12, No. 1,2003, pp. 855-862.
doi:10.1109/JMEMS.2003.820293
[18]
K. Tsuchiya, N. Nakanishi, Y. Uetsuji and E. Nakamachi, “Development of Blood Extraction System for Health Monitoring System,” Biomedical Microdevices, Vol. 7, No. 4, 2005, pp. 347-353.
doi:10.1007/s10544-005-6077-8
[19]
M. Kohl, “Shape Memory Microactuators,” Microtechnology and MEMS, 2004.
doi:10.1007/978-3-662-09875-2
[20]
P. Senthilkumar, G. Dayananda, M. Umapathy and V. Shankar, “Experimental Evaluation of a Shape Memory Alloy Wire Actuator with a Modulated Adaptive Controller for Position Control,” Smart Materials and Structures, Vol. 21, No. 1, 2011, pp. 1-11.
[21]
J. Gupta, H. Gill, S. Andrews and M. Prausnitz, “Kinetic of Skin Resealing After Insertion of Microneedles in Human Subjects,” Journal of Control Release, Vol. 154, No. 1, 2011, pp. 148-155.
doi:10.1016/j.jconrel.2011.05.021
[22]
S. Coulman, J. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler and B. Povazay, “Invivo, insitu imaging of microneedle insertion into the skin of human volunteer using optical coherence tomography,” Pharmaceutical Research, Vol. 28, No. 1, 2011, pp. 357-361.
doi:10.1007/s11095-010-0167-x
[23]
H. Lee and J. Lee, “Evaluation of the Characteristics of a Shape Memory Alloy Spring Actuator,” Smart Materials and Structures, Vol. 9, No. 6, 2000, pp. 817-823.
doi:10.1088/0964-1726/9/6/311
[24]
G. Gattiker, PhD Thesis: Designing a BioMEMS-based Blood Sampler, Calgary: University of Calgary, 2006.
[25]
G. Thomas, MSc Thesis: Electronic Mosquito: A Feed-back-Controlled Semi-Invasive Microsystem for Glucose Monitoring, Calgary: University of Calgary, 2009.
[26]
S. Chakraborty and K. Tsuchiya, “Development and Fluidic Simulation of Microneedles,” Journal of Applied Physics, Vol. 103, No. 1, 2008, pp. 1-9.
[27]
Y. Matsuura, T. Uenoya, K. Tsuchiya, Y. Uetsuji and E. Nakamachi, “Development of a Blood Extraction Device for a Miniature SMBG System,” in Proc. SPIE 6799, Bio MEMS and Nanotechnology III, Canberra, 2007.
[28]
J. Wang, “Electrochemical Glucose Biosensors,” Chemical Reviews, Vol. 108, No. 1, 2008, pp. 814-825.
doi:10.1021/cr068123a
[29]
S. Vashist, Zheng, Al-Rubeaan and F. J. H. Luong, “Technology Behind Commercial Devices for Blood Glucose Monitoring in Diabetes Management: A Review,” Analytical Chimica Acta, Vol. 703, No. 2, 2011, pp. 124-136.
doi:10.1016/j.aca.2011.07.024.
[30]
J. Pickup, F. Hussain, N. Evans and N. Sachedina, “In Vivo Glucose Monitoring: The Clinical Reality and the Promise,” Biosensors and Bioelectronics, Vol. 20, No. 10, 2005, pp. 1897-1902.
doi:10.1016/j.bios.2004.08.016