top
Articles
  • OpenAccess
  • Global Warming Impacts on Alpine Vegetation Dynamic in Qinghai-Tibet Plateau of China  [ICGG 2014]
  • DOI: 10.4236/gep.2014.23007   PP.54 - 59
  • Author(s)
  • Yan Qing Zhang, Jeffery M. Welker
  • ABSTRACT
  • This study is to illustrate alpine vegetation dynamics in Qinghai-Tibetan Plateau of China from simulated filed experimental climate change, vegetation community dynamic simulation integrated with scenarios of global temperature increase of 1 to 3°C, and simulated regional alpine vegetation distribution changes in responses to global warming. Our warming treatment increased air temperatures by 5°C on average and soil temperatures were elevated by 3°C at 5 cm depth. Above- ground biomass of grasses responded rapidly to the warmer conditions whereby biomass was 25% greater than that of controls after only 5 wk of experimental warming. This increase was accompanied by a simultaneous decrease in forb biomass, resulting in almost no net change in community biomass after 5 wk. Under warmed conditions, peak community bio-mass was extended into October due in part to continued growth of grasses and the postponement of senescence. The Vegetation Dynamic Simulation Model calculates a probability surface for each vegetation type, and then combines all vegetation types into a composite map, determined by the maximum likelihood that each vegetation type should distribute to each raster unit. With scenarios of global temperature increase of 1°C to 3°C, the vegetation types such as Dry Kobresia Meadow and Dry Potentilla Shrub that are adapted to warm and dry conditions tend to become more dominant in the study area.

  • KEYWORDS
  • Global Warming, Alpine Vegetaion, Qinghai-Tibet Plateau
  • References
  • [1]
    Billings, W. D. (1987). Constraints to Plant Growth, Reproduction and Establishment in Arctic Environments. Arctic and Alpine Research, 19, 357-365.
    http://dx.doi.org/10.2307/1551400
    [2]
    Chapin, F. S., & Shaver, G. R. (1985). Individualistic Growth Response of Tundra Plant Species to Environmental Manipulations in the Field. Ecology, 66, 564-576.
    http://dx.doi.org/10.2307/1940405
    [3]
    Chapin, F. S., Jefferies, R. L., Reynolds, J. E, & Svoboda, J., (1992). Arctic Plant Physiological Ecology in an Ecosystem Context. In, E. S. Chapin, R. L. Jefferies, J. E. Reynolds, G. R. Shaver, & J. Svoboda (Eds.), Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective (pp. 441-452). San Diego: Academic Press.
    http://dx.doi.org/10.1016/B978-0-12-168250-7.50027-4
    [4]
    Chapin, F. S., III, McGuire, A. D., Randerson, J., Pielke, R. Sr, Baldocchi, D., Hobbie, S. E., Roulet, N., Eugster, W., Kasischke, E., Rastetter, E. B., Zimov, S. A., & Running, S. W. (2000). Arctic and Boreal Ecosystems of Western North America as Components of the Climate System. Global Change Biology, 6, 211-223.
    http://dx.doi.org/10.1046/j.1365-2486.2000.06022.x
    [5]
    Coulelis, H. (1985). Cellular World: A Framework for Modeling Micro-Macro Dynamics. Environment and Planning A, 17, 585-596.
    http://dx.doi.org/10.1068/a170585
    [6]
    Eastman, J. R. (2003). IDRISI Kilimanjaro Tutorial. Manual Version 14.0. Worcester, Massachusetts: Clark Labs of Clark University, 61-123.
    [7]
    Grabherr. G., Gottfried, M., & Pauli, H. (1994). Climate Effects on Mountain Plants. Nature, 369, 448-450.
    http://dx.doi.org/10.1038/369448a0
    [8]
    Itami, R. M. (1994). Simulating Spatial Dynamics: Cellular Automata Theory. Landscape and Urban Planning, 30, 27-47.
    http://dx.doi.org/10.1016/0169-2046(94)90065-5
    [9]
    Klanderud, K., & Birks, H. J. B. (2003). Recent Increases in Species Richness and Shifts in Altitudinal Distributions of Norwegian Mountain Plants. Holocene, 13, 1-6.
    http://dx.doi.org/10.1191/0959683603hl589ft
    [10]
    Klein, J. A., Harte J., & Zhao, X. Q. (2007). Experimental Warming, Not Grazing, Decreases Rangeland Quality on the Tibetian Plateau. Ecological Applications, 17, 341-557.
    http://dx.doi.org/10.1890/05-0685
    [11]
    Leemans, R. E. (2004). Another Reason for Concern: Regional and Global Impacts on Ecosystems for Different Levels of Climate Change. Global Environmental Change, 14, 219-228.
    http://dx.doi.org/10.1016/j.gloenvcha.2004.04.009
    [12]
    Li, Y. N., Zhao, X. Q., Cao, G. M., Zhao, L., & Wang, Q. X. (2004). Analysis on Climates and Vegetation Productivity Background at Haibei Alpine Meadow Ecosystem Research Station. Plateau Meteorology, 23, 558-567.
    [13]
    Li, X., Cheng, G. D., & Lu, L. (2005). Spatial Analysis of Air Temperature in the Qinghai-Tibet Plateau. Arctic, Antarctic, and Alpine Research, 37, 246-252.
    http://dx.doi.org/10.1657/1523-0430(2005)037[0246:SAOATI]2.0.CO;2
    [14]
    Maxwell, B. (1992). Arctic Climate: Potential for Change under Global Warming. In F. S. Chapin, R. L. Jefferies, J. F. Reynolds, G. R. Shaver, & J. Svoboda (Eds.), Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective (pp. 11-34). San Diego: Academic Press.
    http://dx.doi.org/10.1016/B978-0-12-168250-7.50008-0
    [15]
    Ni, J. (2000). A Simulation of Biomes on the Tibetan Plateau and Their Responses to Global Climate Change. Mountain Research and Development, 20, 80-89.
    http://dx.doi.org/10.1659/0276-4741(2000)020[0080:ASOBOT]2.0.CO;2
    [16]
    Shanmuganathan, S., Ajit Narayanan, A., & Robinson, N. (2011). A Multi-Agent Cellular Automaton for Grapevine Growth and Crop Simulation. International Journal of Machine Learning and Computing (IJMLC), 1, 291-296.
    http://dx.doi.org/10.7763/IJMLC.2011.V1.43
    [17]
    Song, M., Zhou, C., & Ouyang, H. (2005). Simulated Distribution of Vegetation Types in Response to Climate Change on the Tibetan Plateau. Journal of Vegetation Science, 16, 341-350.
    http://dx.doi.org/10.1111/j.1654-1103.2005.tb02372.x
    [18]
    Sullivan, P. F., & Welker, J. M. (2005). Warming Chambers Stimulate Early Season Growth of an Arctic Sedge: Results of a Minirhizotron Field Study. Oecologia, 142, 616-626.
    http://dx.doi.org/10.1007/s00442-004-1764-3
    [19]
    Tape, K., Sturm, M., & Racine, C. (2006). The Evidence for Shrub Expansion in Northern Alaska and the Pan-Arctic. Global Change Biology, 12, 686-702.
    http://dx.doi.org/10.1111/j.1365-2486.2006.01128.x
    [20]
    Walker, M. D., Webber, P. J., Arnold, E. H., & Ebert-May, D. (1994). Effects of Interannual Climate Variation on Aboveground Phytomass in Alpine Vegetation. Ecology, 75, 393-408.
    http://dx.doi.org/10.2307/1939543
    [21]
    Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., & Bairlein, F. (2002). Ecology Responses to Recent Climate Change. Nature, 416, 389-395.
    http://dx.doi.org/10.1038/416389a
    [22]
    Welker, J. M., Fahnestock, J. T., Povirk, K., Bilbrough, C., & Piper, R. (2004). Carbon and Nitrogen Dynamics in a Long- Term Grazed Alpine Grassland. Arctic, Antarctic and Alpine Research, 36, 10-19.
    [23]
    Wolfram, S. (1984). Cellular Automata as Models of Complexity. Nature, 311, 419-424.
    http://dx.doi.org/10.1038/311419a0
    [24]
    Wookey, P. A., Parsons, A. N., Welker, J. M., Potter, J., Callaghan, T. V., Lee, J. A., & Press, M. C. (1993). Comparative Responses of Phonology and Reproductive Development to Simulated Environmental Change in Sub-Arctic and High Arctic Plants. Oikos, 67, 490-502.
    http://dx.doi.org/10.2307/3545361
    [25]
    Wookey, P. A., Robinson, C. H., Parsons, A. N., Welker, J. M., Press, M. C., Callaghan, T. V., & Lee, J. A. (1995). Environmental Constraints on the Growth, Photosynthesis and Reproductive Development of Dry as Octopetala at a High Arctic Polar Semi-Desert, Svalbard. Oecologia, 102, 478-489.
    http://dx.doi.org/10.1007/BF00341360
    [26]
    Xia, W. P. (1988). A Brief Introduction to the Fundamental Characteristics and the Work in Haibei Research Station of Alpine Meadow Ecosystem. Proceedings of the International Symposium of an Alpine Meadow Ecosystem. Beijing: Academic Sinica, 1-10.
    [27]
    Zhang, X. S., Yang, D. A., Zhou, G. S., Liu, C. Y., & Zhang, J. (1996). Model Expectation of Impacts of Global Climate Change on Biomes of the Tibetan Plateau. In K. Omasa, K. Kai, H. Taoda, Z. Uchijima, & M. Yoshino (Eds.), Climate change and plants in East Asia (pp. 25-38). Tokyo, JP: Springer-Verlag.
    [28]
    Zhang, Y. Q., & Zhou, X. M. (1992). The Quantitative Classification and Ordination of Haibei Alpine Meadow. Acta Phytoecological ET Geobotanica Sinica, 16, 36-42.
    [29]
    Zhang, Y. Q., & Welker, J. M. (1996). Tibetan Alpine Tundra Responses to Simulated Changes in Climate: Aboveground Biomass and Community Responses. Arctic and Alpine Research, 28, 203-209.
    http://dx.doi.org/10.2307/1551761
    [30]
    Zhang, Y. Q. A., Peterman, M. R., Aun, D. L., & Zhang, Y. M. (2008). Cellular Automata: Simulating Alpine Tundra Vegetation Dynamics in Response to Global Warming. Arctic, Antarctic and Alpine Research, 40, 256-263.
    http://dx.doi.org/10.1657/1523-0430(06-048)[ZHANG]2.0.CO;2
    [31]
    Zhang, Y. Q. A., Song, M. H., & Welker, J. M. (2010). Simulating Alpine Tundra Vegetation Dynamics in Response to Global Warming in China, Global Warming. InTech.
    http://www.intechopen.com/books/global-warming/simulating-alpine-tundra-vegetationdynamics-in-response-to-global-warming-in-china
    [32]
    Zheng, D. (1996). The System of Physico-Geographical Regions of the Tibet Plateau. Science in China Series D, 39, 410-417.

Engineering Information Institute is the member of/source content provider to

http://www.scirp.org http://www.hanspub.org/ http://www.crossref.org/index.html http://www.oalib.com/ http://www.ebscohost.com/ http://www.proquest.co.uk/en-UK/aboutus/default.shtml http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&Full=journal%20of%20Bioequivalence%20%26%20Bioavailability http://publishers.indexcopernicus.com/index.php