[1]
Frost, H.M. (1987) Bone Mass and the Mechanostat—A Proposal. Anatomical Record, 219, 1-9.
http://dx.doi.org/10.1002/ar.1092190104
[2]
Lin, D., Li, Q., Li, W. and Swain, M.V. (2009) Dental Implant Induced Bone Remodeling and Associated Algorithms. Journal of the Mechanical Behaviour of Biomedical Materials, 2, 410-432.
http://dx.doi.org/10.1016/j.jmbbm.2008.11.007
[3]
Chen, J.N., Li, W., Swain, M.V., Darendeliler, M.A. and Li, Q. (2014) A Periodontal Ligament Driven Bone Remodeling Algorithm for Orthodontic Tooth Movement. Journal of Biomechanics, 47, 1689-1695.
http://dx.doi.org/10.1016/j.jbiomech.2014.02.030
[4]
McLean, F.C. and Urist, M.R. (1968) Bone. 3rd Edition, University of Chicago, Chicago.
[5]
Frost, H.M. (1990) Skeletal Structural Adaptations to Mechanical Usage (Satmu), Redefining Wolff Law—The Re- modeling Problem. Anatomical Record, 226, 414-422.
http://dx.doi.org/10.1002/ar.1092260403
[6]
Beaupre, G.S., Orr, T.E. and Carter, D.R. (1990) An Approach for Time-Dependent Bone Modeling and Remodeling —Theoretical Development. Journal of Orthopaedic Research, 8, 651-661.
http://dx.doi.org/10.1002/jor.1100080506
[7]
Huiskes, H.R., Weinans, H., Grootenboer, J., Dalstra, M., Fudala, B. and Slooff, T.J. (1987) Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis. Journal of Biomechanics, 20, 1135-1150.
http://dx.doi.org/10.1016/0021-9290(87)90030-3
[8]
Lin, D., Li, Q., Li, W., Duckmanton, N. and Swain, M.V. (2010) Mandibular Bone Remodeling Induced by Dental Implant. Journal of Biomechanics, 43, 287-293.
http://dx.doi.org/10.1016/j.jbiomech.2009.08.024
[9]
Rungsiyakull, C., Rungsiyakull, P., Li, Q., Li, W. and Swain, M.V. (2011) Effects of Occlusal Inclination and Loading on Bone Remodeling. The International Journal of Oral & Maxillofacial Implants, 26, 527-537.
[10]
Field, C., Li, Q., Li, W., Thompson, M. and Swain, M.V. (2010) Prediction of Mandibular Bone Remodeling Induced by Fixed Partial Dentures. Journal of Biomechanics, 43, 1771-1779.
http://dx.doi.org/10.1016/j.jbiomech.2010.02.016
[11]
Field, C., Li, Q., Li, W., Thompson, M. and Swain, M.V. (2012) A Comparative Mechanical and Bone Remodeling Study of All-Ceramic Posterior Inlay and Onlay Fixed Partial Dentures. Journal of Dentistry, 40, 48-56.
http://dx.doi.org/10.1016/j.jdent.2011.10.003
[12]
Stanford, C.M. and Brand, R.A. (1999) Toward an Understanding of Implant Occlusion and Strain Adaptive Bone Modeling and Remodeling. Journal of Prosthetic Dentistry, 81, 553-561.
http://dx.doi.org/10.1016/S0022-3913(99)70209-X
[13]
Khraisat, A., Hashimoto, A., Nomura, S. and Miyakawa, O. (2004) Effect of Lateral Cyclic Loading on Abutment Screw Loosening of An External Hexagon Implant System. Journal of Prosthetic Dentistry, 91, 326-334.
http://dx.doi.org/10.1016/j.prosdent.2004.01.001
[14]
Lin, D., Li, Q., Li, W. and Swain, M.V. (2010) Bone Remodeling Induced by Dental Implants of Functionally-Graded Materials. Journal of Biomedical Materials Research: Part B—Applied Biomaterials, 92B, 430-438.
[15]
Lin, D., Li, Q., Li, W., Zhou, S.W. and Swain, M.V. (2009) Design Optimization of Functionally Graded Dental Implant for Promoting Bone Remodeling. Composites Part B Engineering, 40, 668-675.
http://dx.doi.org/10.1016/j.compositesb.2009.04.015
[16]
Li, W., Swain, M.V., Li, Q., Ironside, J. and Steven, G.P. (2004) Fibre Reinforced Composite Dental Bridge. Part II: Numerical Investigation. Biomaterials, 25, 4995-5001.
http://dx.doi.org/10.1016/j.biomaterials.2004.01.011
[17]
Li, W., Swain, M.V., Li, Q., Ironside, J. and Steven, G.P. (2005) Towards Automated 3D Finite Element Modeling of Direct Fiber Reinforced Composite Dental Bridge. Journal of Biomedical Materials Research Part B—Applied Bio-materials, 74B, 520-528.
http://dx.doi.org/10.1002/jbm.b.30233
[18]
Chen, J.N., Rungsiyakull, C., Li, W., Chen, Y.H., Swain, M.V. and Li, Q. (2013) Multiscale Design of Surface Morphological Gradient for Osseointegration. Journal of the Mechanical Behavior of Biomedical Materials, 20, 387-397.
http://dx.doi.org/10.1016/j.jmbbm.2012.08.019