[1]
Pilon, J.J., Kuijpers-Jagtman, A.M. and Maltha, J.C. (1996) Magnitude of Orthodontic Forces and Rate of Bodily Tooth Movement. An Experimental Study. American Journal of Orthodontics and Dentofacial Orthopedics, 110, 16- 23.
http://dx.doi.org/10.1016/S0889-5406(96)70082-3
[2]
Meikle, M.C. (2006) The Tissue, Cellular, and Molecular Regulation of Orthodontic Tooth Movement: 100 Years after Carl Sandstedt. The European Journal of Orthodontics, 28, 221-240.
http://dx.doi.org/10.1093/ejo/cjl001
[3]
Lekic, P. and McCulloch, C.A.G. (1996) Periodontal Ligament Cell Populations: The Central Role of Fibroblasts in Creating a Unique Tissue. The Anatomical Record, 245, 327-341.
http://dx.doi.org/10.1002/(SICI)1097-0185(199606)245:2<327::AID-AR15>3.0.CO;2-R
[4]
Bartkova, J., Lukas, J., Strauss, M. and Bartek, J. (1998) Cyclin D3: Requirement for G1/S Transition and High Abundance in Quiescent Tissues Suggest a Dual Role in Proliferation and Differentiation. Oncogene, 17, 1027-1037.
http://dx.doi.org/10.1038/sj.onc.1202016
[5]
Reddy, V.S., Valente, A.J., Delafontaine, P. and Chandrasekar, B. (2011) Interleukin-18/WNT1-Inducible Signaling Pathway Protein-1 Signaling Mediates Human Saphenous Vein Smooth Muscle Cell Proliferation. Journal of Cellular Physiology, 226, 3303-3315.
http://dx.doi.org/10.1002/jcp.22676
[6]
Arnsdorf, E.J., Tummala, P., Kwon, R.Y. and Jacobs, C.R. (2009) Mechanically Induced Osteogenic Differentiation— The Role of RhoA, ROCKII and Cytoskeletal Dynamics. Journal of Cell Science, 122, 546-553.
http://dx.doi.org/10.1242/jcs.036293
[7]
Lee, K.S., Kim, H.J., Li, Q.L., Chi, X.Z., Ueta, C., Komori, T., et al. (2000) Runx2 Is a Common Target of Transforming Growth Factor β1 and Bone Morphogenetic Protein 2, and Cooperation between Runx2 and Smad5 Induces Osteoblast-Specific Gene Expression in the Pluripotent Mesenchymal Precursor Cell Line C2C12. Molecular and Cellular Biology, 20, 8783-8792.
http://dx.doi.org/10.1128/MCB.20.23.8783-8792.2000
[8]
Pavlin, D. and Gluhak-Heinrich, J. (2001) Effect of Mechanical Loading on Periodontal Cells. Critical Reviews in Oral Biology & Medicine, 12, 414-424.
http://dx.doi.org/10.1177/10454411010120050401
[9]
Yamaguchi, M., Shimizu, N., Shibata, Y. and Abiko, Y. (1996) Effects of Different Magnitudes of Tension-Force on Alkaline Phosphatase Activity in Periodontal Ligament Cells. Journal of Dental Research, 75, 889-894.
http://dx.doi.org/10.1177/00220345960750030501
[10]
Rabie, A.B.M and Yang, Y. (2009) Perio-Ortho Conjoint Treatment of Periodontally Compromised Patients. Chinese Journal of Orthodontics, 16, 181-183.
[11]
Ueda, N., Koide, M., Ohguchi, M., Ishihara, Y., Noguchi, T., Okahashi, N., et al. (1998) Involvement of Prostaglandin E2 and Interleukin-1α in the Differentiation and Survival of Osteoclasts Induced by Lipopolysaccharide from Actinobacillus Actinomycetemcomitans Y4. Journal of Periodontal Research, 33, 509-516.
http://dx.doi.org/10.1111/j.1600-0765.1998.tb02351.x
[12]
Howard, P.S., Kucich, U., Taliwal, R. and Korostoff, J.M. (1998) Mechanical Forces Alter Extracellular Matrix Synthesis by Human Periodontal Ligament Fibroblasts. Journal of Periodontal Research, 33, 500-508.
http://dx.doi.org/10.1111/j.1600-0765.1998.tb02350.x
[13]
Li, Y., Zhao, Z., Song, J., Feng, Y., Wang, Y., Li, X., et al. (2009) Cyclic Force Upregulates Mechano-Growth Factor and Elevates Cell Proliferation in 3D Cultured Skeletal Myoblasts. Archives of Biochemistry and Biophysics, 490, 171- 176.
http://dx.doi.org/10.1016/j.abb.2009.08.016
[14]
Fan, X., Zou, R., Zhao, Z., Yang, P., Li, Y. and Song, J. (2009) Tensile Strain Induces Integrin β1 and ILK Expression Higher and Faster in 3D Cultured Rat Skeletal Myoblasts than in 2D Cultures. Tissue and Cell, 41, 266-270.
http://dx.doi.org/10.1016/j.tice.2008.12.007
[15]
Li, Y., Song, J., Yang, P., Zou, R., Fan, X. and Zhao, Z. (2009) Establishment of a Three-Dimensional Culture and Mechanical Loading System for Skeletal Myoblasts. Cell Biology International, 33, 192-198.
http://dx.doi.org/10.1016/j.cellbi.2008.11.002
[16]
Burr, D.B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, M., Finestone, A., et al. (1996) In Vivo Measurement of Human Tibial Strains during Vigorous Activity. Bone, 18, 405-410.
http://dx.doi.org/10.1016/8756-3282(96)00028-2
[17]
McGuinness, N.J., Wilson, A.N., Jones, M.L. and Middleton, J. (1991) A Stress Analysis of the Periodontal Ligament under Various Orthodontic Loadings. The European Journal of Orthodontics, 13, 231-242.
http://dx.doi.org/10.1093/ejo/13.3.231
[18]
Baumrind, S. (1969) A Reconsideration of the Propriety of the “Pressure-Tension” Hypothesis. American Journal of Orthodontics, 55, 12-22.
http://dx.doi.org/10.1016/S0002-9416(69)90170-5
[19]
Baumrind, S. and Buck, D.L. (1970) Rate Changes in Cell Replication and Protein Synthesis in the Periodontal Ligament Incident to Tooth Movement. American Journal of Orthodontics, 57, 109-131.
http://dx.doi.org/10.1016/0002-9416(70)90259-9
[20]
Smith, R.K. and Roberts, W.E. (1980) Cell Kinetics of the Initial Response to Orthodontically Induced Osteogenesis in Rat Molar Periodontal Ligament. Calcified Tissue International, 30, 51-56.
http://dx.doi.org/10.1007/BF02408606
[21]
EugeneRoberts, W. and Chase, D.C. (1981) Kinetics of Cell Proliferation and Migration Associated with Orthodontically-Induced Osteogenesis. Journal of Dental Research, 60, 174-181.
http://dx.doi.org/10.1177/00220345810600021501
[22]
Liao, C. and Hua, Y. (2013) Effect of Hydrogen Sulphide on the Expression of Osteoprotegerin and Receptor Activator of NF-kB Ligand in Human Periodontal Ligament Cells Induced by Tension-Force Stimulation. Archives of Oral Biology, 58, 1784-1790.
http://dx.doi.org/10.1016/j.archoralbio.2013.08.004
[23]
Fan, X., Rahnert, J.A., Murphy, T.C., Nanes, M.S., Greenfield, E.M. and Rubin, J. (2006) Response to Mechanical Strain in an Immortalized Pre-Osteoblast Cell Is Dependent on ERK1/2. Journal of Cellular Physiology, 207, 454-460.
http://dx.doi.org/10.1002/jcp.20581
[24]
Takata, T., Miyauchi, M., Ogawa, I., Ito, H., Kobayashi, J. and Nikai, H. (1997) Reactive Change in Proliferative Activity of the Junctional Epithelium after Topical Application of Lipopolysaccharide. Journal of Periodontology, 68, 531-535.
http://dx.doi.org/10.1902/jop.1997.68.6.531
[25]
Bodet, C., Andrian, E., Tanabe, S.I. and Grenier, D. (2007) Actinobacillus Actinomycetemcomitans Lipopolysaccharide Regulates Matrix Metalloproteinase, Tissue Inhibitors of Matrix Metalloproteinase, and Plasminogen Activator Production by Human Gingival Fibroblasts: A Potential Role in Connective Tissue Destruction. Journal of cellular physiology, 212, 189-194.
http://dx.doi.org/10.1002/jcp.21018
[26]
Krishnan, V. and Davidovitch, Z.E. (2006) Cellular, Molecular, and Tissue-Level Reactions to Orthodontic Force. American Journal of Orthodontics and Dentofacial Orthopedics, 129, 469.e1-469.e32.
http://dx.doi.org/10.1016/j.ajodo.2005.10.007
[27]
Ueda, N., Koide, M., Ohguchi, M., Ishihara, Y., Noguchi, T., Okahashi, N. and Nishihara, T. (1998) Involvement of Prostaglandin E2 and Interleukin-1α in the Differentiation and Survival of Osteoclasts Induced by Lipopolysaccharide from Actinobacillus Actinomycetemcomitans Y4. Journal of Periodontal Research, 33, 509-516.
http://dx.doi.org/10.1111/j.1600-0765.1998.tb02351.x
[28]
Yamaji, Y., Kubota, T., Sasaguri, K., Sato, S., Suzuki, Y., Kumada, H. and Umemoto, T. (1995) Inflammatory Cytokine Gene Expression in Human Periodontal Ligament Fibroblasts Stimulated with Bacterial Lipopolysaccharides. Infection and Immunity, 63, 3576-3581.