[1]
A. V. Eletskii, “Carbon Nanotubes,” UFN 167, 1997, pp. 945-972.
doi:10.3367/UFNr.0167.199709b.0945
[2]
R. Saito, G. Dresselhaus, et al., “Physical Properties of Carbon Nanotubes,” Singapore, World Scientific Publishing Co. Pte. Ltd, 1998.
[3]
F. F. Komarov and A. M. Mironov, “Carbon Nanotubes: Present and Future,” Physics and Chemistry of Solid State, Vol. 5, No. 3, 2004, pp. 411-429.
[4]
M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier and E. Hernandez, “Electronic, Thermal and Mechanical Properties of Carbon Nanotubes,” Philo-sophical Transactions of the Royal Society A, Vol. 362, 2004, pp. 2065-2098.
doi:10.1098/rsta.2004.1430
[5]
P. N. Diachkov, “Carbon Nanotubes,” The Structure, Properties and Applications, Persistence, Laboratory of Knowledge, 2006, p. 296.
[6]
H. Qian, E. S. Greenhalgh, M. S. P. Shaffer and A. Bismarck, “Carbon Nanotube-based Hierarchical Composites: a Review,” Journal of Materials Chemistry, Vol. 20, 2010, pp. 4751-4762.
doi:10.1039/c000041h
[7]
Y. Wang and J. T. W. Yeow, “A Review of Carbon Nanotubes-Based Gas Sensors,” Journal of Sensors 2009, 2009, pp. 1-24,
doi:10.1155/2009/493904
[8]
M. Kumar and Y. Ando, “Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production,” Journal of Nanoscience and Nanotechnology Vol. 10, 2010, pp. 3739-3758.
doi:10.1166/jnn.2010.2939
[9]
F. Tuinstra and J. L. Koening, “Raman Spectrum of Graphite,” Journal of Chemical Physics, Vol. 53, No. 3, 1970, p. 1126.
doi:10.1063/1.1674108