[1]
Rosenbaum, D.M., Rasmussen, S.G.F. and Kobilka, B.K. (2009) The Structure and Function of G-Protein-Coupled Receptors. Nature, 459, 356-363.
http://dx.doi.org/10.1038/nature08144
[2]
Lagerström, M.C. and Schiöth, H.B. (2008) Structural Diversity of G Protein-Coupled Receptors and Significance for Drug Discovery. Nature Reviews Drug Discovery, 7, 339-357.
http://dx.doi.org/10.1038/nrd2518
[3]
Radu, A., Pichon, C., Camparo, P., et al. (2010) Expression of Follicle-Stimulating Hormone Receptor in Tumor Blood Vessels. New England Journal of Medicine, 363, 1621-1630.
http://dx.doi.org/10.1056/NEJMoa1001283
[4]
Liu, X.M., Chan, H.C., Ding, G.L., et al. (2015) FSH Regulates Fat Accumulation and Redi-stribution in Aging through the Gαi/Ca2+/CREB Pathway. Aging Cell, 14, 409-420.
http://dx.doi.org/10.1111/acel.12331
[5]
Fan, Q.R. and Hendrickson, W.A. (2005) Structure of Human Follicle-Stimulating Hormone in Complex with Its Receptor. Nature, 433, 269-277.
http://dx.doi.org/10.1038/nature03206
[6]
Moyle, W.R., Lin, W., Myers, R.V., et al. (2005) Models of Glycoprotein Hormone Receptor Interaction. Endocrine, 26, 189-205.
http://dx.doi.org/10.1385/ENDO:26:3:189
[7]
Perlman, S., van den Hazel, B., Christiansen, J., et al. (2003) Glycosylation of an N-Terminal Extension Prolongs the Half-Life and Increases the in Vivo Activity of Follicle Stimulating Hormone. The Journal of Clinical Endocrinology & Metabolism, 88, 3227-3235.
http://dx.doi.org/10.1210/jc.2002-021201
[8]
Wide, L., Eriksson, K., Sluss, P.M., et al. (2009) Serum Half-Life of Pituitary Gonadotropins Is Decreased by Sulfonation and Increased by Sialylation in Women. The Journal of Clinical Endocrinology & Metabolism, 94, 958-964.
http://dx.doi.org/10.1210/jc.2008-2070
[9]
Verma, R., Boleti, E. and George, A.J.T. (1998) Antibody Engineering: Comparison of Bacterial, Yeast, Insect and Mammalian Expression Systems. Journal of Immunological Methods, 216, 165-181.
http://dx.doi.org/10.1016/S0022-1759(98)00077-5
[10]
Yin, J., Li, G., Ren, X., et al. (2007) Select What You Need: A Comparative Evalu-ation of the Advantages and Limitations of Frequently Used Expression Systems for Foreign Genes. Journal of Biotechnology, 127, 335-347.
http://dx.doi.org/10.1016/j.jbiotec.2006.07.012
[11]
Dawson, P.E. and Kent, S.B.H. (2000) Synthesis of Native Proteins by Chemical Liga-tion. Annual Review of Biochemistry, 69, 923-960.
http://dx.doi.org/10.1146/annurev.biochem.69.1.923
[12]
Kent, S.B.H. (2009) Total Chemical Synthesis of Proteins. Chemical Society Re-views, 38, 338-351.
http://dx.doi.org/10.1039/B700141J
[13]
Aussedat, B., Fasching, B., Johnston, E., et al. (2012) Total Synthesis of the α-Subunit of Human Glycoprotein Hormones: Toward Fully Synthetic Homogeneous Human Follicle- Stimulating Hormone. Journal of the American Chemical Society, 134, 3532-3541.
http://dx.doi.org/10.1021/ja2111459
[14]
Van Damme, M.P., Robertson, D.M., Marana, R., et al. (1979) A Sensitive and Specific in Vitro Bioassay Method for the Measurement of Follicle-Stimulating Hormone Activity. Acta Endocrinologica, 91, 224-237.
http://dx.doi.org/10.1530/acta.0.0910224
[15]
Barrios-De-Tomasi, J., Timossi, C., Merchant, H., et al. (2002) Assessment of the in Vitro and in Vivo Biological Activities of the Human Follicle-Stimulating Isohormones. Molecular and Cellular Endocrinology, 186, 189-198.
http://dx.doi.org/10.1016/S0303-7207(01)00657-8
[16]
Burgon, P.G., Robertson, D.M., Stanton, P.G., et al. (1993) Immunological Activities of Highly Purified Isoforms of Human FSH Correlate with in Vitro Bioactivities. Journal of Endocrinology, 139, 511-518.
http://dx.doi.org/10.1677/joe.0.1390511
[17]
Albanese, C., Christin-Maitre, S., Sluss, P.M., et al. (1994) Development of a Bioassay for FSH Using a Recombinant Human FSH Receptor and a cAMP Responsive Luciferase Reporter Gene. Molecular and Cellular Endocrinology, 101, 211-219.
http://dx.doi.org/10.1016/0303-7207(94)90237-2
[18]
Krishnamurthy, H., Kishi, H., Shi, M., et al. (2003) Postendocytotic Trafficking of the Follicle-Stimulating Hormone (FSH)-FSH Receptor Complex. Molecular Endocrinology, 17, 2162-2176.
http://dx.doi.org/10.1210/me.2003-0118
[19]
Hunzicker-Dunn, M. and Maizels, E.T. (2006) FSH Signaling Pathways in Immature Granulosa Cells That Regulate Target Gene Expression: Branching out from Protein Kinase A. Cellular Signalling, 18, 1351-1359.
http://dx.doi.org/10.1016/j.cellsig.2006.02.011
[20]
Wayne, C.M., Fan, H.Y., Cheng, X., et al. (2007) Follicle-Stimulating Hormone Induces Multiple Signaling Cascades: Evidence That Activation of Rous Sarcoma Oncogene, RAS, and the Epidermal Growth Factor Receptor Are Critical for Granulosa Cell Differentiation. Molecular Endocrinology, 21, 1940-1957.
http://dx.doi.org/10.1210/me.2007-0020
[21]
Casarini, L., Moriondo, V., Marino, M., et al. (2014) FSHR Polymorphism p. N680S Mediates Different Responses to FSH in Vitro. Molecular and Cellular Endocrinology, 393, 83- 91.
http://dx.doi.org/10.1016/j.mce.2014.06.013
[22]
Zhang, Y.L., Guo, K.P., Ji, S.Y., et al. (2016) Development and Characterization of a Novel Long-Acting Recombinant Follicle Stimulating Hormone Agonist by Fusing Fc to an FSH-β Subunit. Human Reproduction, 31, 169-182.
http://dx.doi.org/10.1093/humrep/dev295