[1]
von der Fehr, N.-H.M. and Harbord, D. (1993) Spot Market Competition in the UK Electricity Industry. The Economic Journal, 103, 531-546.
[2]
Nicolaisen, J. and Petro, V. (2001) Tesfatsion. Market Power and Efficiency in a Computational Electricity Market with Dis-criminatory Double-Auction Pricing. IEEE Transactions on Evolutionary Computation, 5.
[3]
Saini, A. and Saxena, A.K. (2010) Optimal Power Flow Based Congestion Management Methods for Competitive Electricity Markets. International Journal of Computer and Electrical Engineering, 2, 1793-8163.
http://dx.doi.org/10.7763/ijcee.2010.v2.116
[4]
Li, G. (2007) Day-Ahead Electricity Price Forecasting in a Grid Environment. IEEE Transactions on Power Systems, 22.
[5]
Giuliettia, M., Grossib, L. and Waterson, M. (2010) Price Transmission in the UK Electricity Market: Was NETA Beneficial? Energy Economics, 32, 1165-1174.
http://dx.doi.org/10.1016/j.eneco.2010.01.008
[6]
Lo, K.L. and Wu, Y.K. (2003) Risk Assessment Due to Local Demand Forecast Uncer-tainty in the Competitive Supply Industry. IEE Proc.-Gener. Transm. Distrib., 150.
http://dx.doi.org/10.1049/ip-gtd:20030641
[7]
Naylor, T.H., Seaks, T.G. and Wichern, D.W. (1972) Box-Jenkins Methods: An Alternative to Econometric Models. International Statistical Review/Revue Internationale de Statistique, 40, 123-137.
[8]
Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (2008) Time Series Analysis: Forecasting and Control. 4th Edition, Wiley, Oxford.
http://dx.doi.org/10.1002/9781118619193
[9]
Nogales, F.J., Contreras, J., Conejo, A.J. and Espínola, R. (2002) Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Trans. Power Syst., 17, 342-348.
http://dx.doi.org/10.1109/TPWRS.2002.1007902
[10]
Hoa, S.L., Xieb, M. and Gohb, T.N. (2002) A Comparative Study of Neural Network and Box-Jenkins ARIMA Modeling in Time Series Prediction. Computers & Industrial Engineering, 42, 371-375.
http://dx.doi.org/10.1016/S0360-8352(02)00036-0
[11]
Aggarwal, S.K., Saini, L.M. and Kumar, A. (2009) International Journal of Electrical Power & Energy Systems. Electrical Power and Energy Systems, 31, 13-22.
http://dx.doi.org/10.1016/j.ijepes.2008.09.003
[12]
Tran, N. and Reed, D.A. (2004) Automatic ARIMA Time Series Modeling for Adaptive I/O Prefetching. IEEE Transactions on Parallel and Distributed Systems, 15.
[13]
Devi, B.U., Sundar, D. and Alli, P. (2013) An Effective Time Series Analysis for Stock Trend Prediction Using ARIMA Model for Nifty Midcap-50. International Journal of Data Mining & Knowledge Management Process, 65-78.
http://dx.doi.org/10.5121/ijdkp.2013.3106
[14]
Chai, T. and Draxler, R.R. (2014) Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Copernicus Publications on Behalf of the European Geosciences Union.
[15]
Fan, F., Bell, K. and Infield, D. (2016) Probabilistic Real-Time Thermal Rating Forecasting for Overhead Lines by Conditionally Heteroscedastic Auto-Regressive Models. IEEE Trans- actions on Power Delivery.
http://dx.doi.org/10.1109/TPWRD.2016.2577140
[16]
Fan, F., Bell, K. and Infield, D. (2016) Probabilistic Weather Forecasting for Dynamic Line Rating Studies. Proc. IEEE PowerTech Conference, 1-6.
http://dx.doi.org/10.1109/pscc.2016.7540854