[1]
Fan, X.L., Zhang, J.P. and Wu, P. (2002) Water and Nitrogen Use Efficiency of Lowland Rice in Ground Covering Rice Production System in South China. Journal of Plant Nutrition, 25, 1855-1862.
http://dx.doi.org/10.1081/PLN-120013279
[2]
Peng, S., Shen K., Wang, X., Liu, J., Luo, X. and Wu, L.H. (1999) A New Rice Cultivation Technology: Plastic Film Mulching. International Rice Research Notes, 24, 9-10.
[3]
Li, Y.S., Wu, L.H., Zhao, L.M., Lu, X.H., Fan ,Q.L. and Zhang, F.S. (2007) Influence of Continuous Plastic Film Mulching on Yield, Water Use Efficiency and Soil Properties of Rice Fields under Non-Flooding Condition. Soil and Tillage Research, 93, 370-378.
http://dx.doi.org/10.1016/j.still.2006.05.010
[4]
Clasen, A.T., Boyle, S.I., Haskins, K.E., Overby, S.T. and Hart, S.C. (2003) Community-Level Physiological Profiles of Bacteria and Fungi: Plate Type and Incubation Temper-ature Influences on Contrasting Soils. FEMS Microbiology Ecology, 44, 319-328.
http://dx.doi.org/10.1016/S0168-6496(03)00068-0
[5]
Bossio, D.A. and Scow, K.M. (1995) Impact of Carbon and Flooding on the Metabolic Diversity of Microbial Communities in Soils. Applied and Environment Microbiology, 61, 4043-4050.
[6]
Winding, A., Hund-Rinke, K. and Rutgers, M. (2005) The Use of Microorganisms in Ecological Soil Classification and Assessment Concepts. Ecotoxicology and Environment Safety, 62, 230-248.
http://dx.doi.org/10.1016/j.ecoenv.2005.03.026
[7]
Liu, M. and Wu, L.H. (2004) Changes of Available Fe, Mn, Zn and Cu Contents among Different Layers of Non-?ooded Paddy Soils with Ground Mulching. Journal of Zhejiang Uni-versity (Agricultural and Life Science), 30, 646-649. (In Chinese)
[8]
Liu, X.J., Wang, J.C., Lu, S.H., Zhang, F.S., Zeng, X.Z. and Ai, Y.W. (2003) Effects of Non-?ooded Mulching Cultivation on Crop Yield, Nutrient Uptake and Nutrient Balance in Rice-Wheat Cropping Systems. Field Crops Research, 83, 297-311.
http://dx.doi.org/10.1016/S0378-4290(03)00079-0
[9]
Nakatsu, C.H., Torsvik, V. and ?vre?s, L. (2000) Soil Community Analysis Using DGGE of 16S rDNA Polymerase Chain Reaction Products. Soil Science Society America Journal, 64, 1382-1388.
http://dx.doi.org/10.2136/sssaj2000.6441382x
[10]
Wu, M.Y., Wu, L.H., Zhao, L.M. and Chen, M.M. (2009) Effects of Continuous Plastic Film Mulching on Paddy Soil Bacterial Diversity. Acta Agriculturae Scandinavica Section B—Soil and Plant Science, 59, 286-294.
http://dx.doi.org/10.1080/09064710802095024
[11]
Cantero, M., Angás, P. and Lampurlanés, J. (2003C) Growth, Yield and Water Productivity of Barley (Hordeum vulgare, L.) Affected by Tillage and N Fertilization in Mediterra-nean Semiarid, Rained Conditions of Spain. Field Crops Research, 84, 342-357.
[12]
Laverman, A.M., Braster, M., R?ling ,W.F.M. and Van Verseveld, H.W. (2005) Bacterial Community Structure and Metabolic Profiles in a Forest Soil Exhibiting Spatially Variable Net Nitrate Production. Soil Biology and Biochemistry, 37, 1581-1588.
http://dx.doi.org/10.1016/j.soilbio.2005.01.019
[13]
Wang, J.K., Zhang, J.H., Xu, X.C., Zhang, X.D. and Zhu, F.C. (1992) Effects of Plastic Film Mulching on Soil Fertility. Journal of Shenyang Agricultural University, 23, 32-37.
[14]
Yao, J.G. and Yu, Z.X. (1998) Effects of Plastic Film Mulching on Soil Nutrient. Anhui Agricultural Science Bull, 4, 36-37.
[15]
Wu, L.H., Zhu, Z.R., Liang, Y.C., Shi, W.Y. and Zhang, L.M. (1999) A High Yielding, Water-Saving and Fertilizer- Saving Cultivation Technique for Rice Mulched by Plastic Film under Dry Land Condition. Journal of Zhejiang Agricultural University, 25, 41-42. (In Chinese)
[16]
Liu, X.J., Ai, Y.W., Zhang, F.S., Lu, S.H., Zeng, X.Z. and Fan, M.S. (2005) Crop Production, Nitrogen Recovery and Water Use Efficiency in Rice-Wheat Rotation as Affected by Non-Flooded Mulching Cultivation (NFMC). Nutrient Cycling in Agroecosystems, 71, 289-299.
http://dx.doi.org/10.1007/s10705-004-6801-4