[1]
Kohler, P.M. (2010) Chemicals Science for Policy: From Dirty Dozen to Toxic 21. 2010 Meeting of the International Studies Association.
http://www.Allacademic.Com/meta/p_mla_ apa_research_citation/4/1/3/4/5/p413452_index.html.
[2]
Jansson, B. (2001) In International Symposium on Environmental Endocrine Disrupters, 2001.
http://www.env.gojp/chemi/end/2001report/pdf-e/jansson-e.pdf
[3]
Lv, Y.B. and Wang, Z.J. (2003) Accumulation of Organochlorinated Pesticides by Triolein-Containing Semipermeable Membrane Device (Triolein-SPMD) and Rainbow Trout. Water Res., 37, 2419-2425.
http://dx.doi.org/10.1016/S0043-1354(03)00003-4
[4]
Huo, J.X., Liu, H.J., Qu, J.H., Ru, J., Liu, H.N. and Li, G.T. (2005) Dieldrin and Endrin Removal from Water by Triolein-Embedded Adsorbent. Chinese Science Bulletin, 50, 2696-2700.
http://dx.doi.org/10.1360/982005-471
[5]
Ke, R.H., Xu, Y.P., Wang, Z.J., et al. (2006) Estimation of the Uptake Rate Constants for Polycyclic Aromatic Hydrocarbons Accumulated by Semipermeable Membrane Devices and Triolein-Embedded Cellulose Acetate Membranes. Environ. Sci. Technol., 40, 3906-3911.
http://dx.doi.org/10.1021/es060493t
[6]
Liu, H.J., Ru, J. and Qu, J.H. (2009) Removal of Persistent Organic Pollu-tants from Micro-Polluted Drinking Water by Triolein Embedded Absorbent. Bioresource Technol., 100, 2995-3002.
http://dx.doi.org/10.1016/j.biortech.2009.01.026
[7]
Huo, J.-X., Liu, H.-J., Qu, J.-H., et al. (2005) Preparation and Characteristic of Triolein-Embedded Composite Sorbents for Water Purification. Sep. Purif. Technol., 44, 37-43.
http://dx.doi.org/10.1016/j.seppur.2004.12.001
[8]
Takashi, H., Yasuhiko, I. and Kazuhiko, I. (2001) Preparation and Performance of Protein-Adsorption-Resistant Asymmetric Porous Membrane Composed of Polysul-fone/Phospholipid Polymer Blend. Biomaterials, 22, 243-251.
http://dx.doi.org/10.1016/S0142-9612(00)00180-0
[9]
Ye, S.H., Watanabe, J., Iwasaki, Y. and Ishihara, K. (2003) Antifouling Blood Purification Membrane Composed of Cellulose Acetate and Phospholipid Polymer. Biomaterials, 24, 4143-4152.
http://dx.doi.org/10.1016/S0142-9612(03)00296-5
[10]
Ye, S.H., Watanabe, J., Iwasaki, Y. and Ishihara, K. (2005) In Situ Modification on Cellulose Acetate Hollow Fiber Membrane Modified with Phospholipid Polymer for Biomedi-cal Application. J. Membrane Sci., 249, 133-141.
http://dx.doi.org/10.1016/j.memsci.2004.10.006
[11]
Bochek, A.M. and Kalyuzhnaya, L.M. (2002) Interaction of Water with Cellulose and Cellulose Acetates as Influenced by the Hydrogen Bond System and Hydrophil-ic-Hydrophobic Balance of the Macromolecules. Macromol. Chem. Polym. Mater., 75, 989-993.
[12]
Gómez-Bujedo, S., Fleury, E. and Vignon, M.R. (2004) Preparation of Cellouronic Acids and Partially Acetylated Cellouronic Acids by TEMPO/NaClO Oxidation of Water-Soluble Cellulose Acetate. Biomacromolecules, 5, 565-571.
http://dx.doi.org/10.1021/bm034405y
[13]
Wang, Y., Wang, Y.-J., Wang, L., et al. (2013) Reducing the Bioavailabil-ity of PCBs in Soil to Plant by Biochars Assessed with Triolein-Embedded Cellulose Acetate Membrane Technique. Environ. Environmental Pollution, 174, 250- 256.
http://dx.doi.org/10.1016/j.envpol.2012.12.004
[14]
Tsunashima, Y., Kawanishi, H. and Horii, F. (2002) Reorganization of Dynamic Self-Assemblies of Cellulose Diacetate in Solution: Dynamical Critical-Like Fluctuations in the Lower Critical Solution Temperature System. Biomacromolecules, 3, 1276-1285.
http://dx.doi.org/10.1021/bm0200682
[15]
Zhang, X.F., Hua, H., Shen, X.Y. and Yang, Q. (2007) In Vitro Degradation and Biocompatibility of Poly(L-Lactic Acid)/Chitosan Fiber Composites. Polymer, 48, 1005-1011.
http://dx.doi.org/10.1016/j.polymer.2006.12.028
[16]
Mo, X., Chen, H.Z., Wang, Y., Shi, M.M. and Wang, M. (2005) Fabrication and Photoconductivity Study of Copper Phthalocyanine/Perylene Composite with Bulk Heterojunctions Obtained by Solution Blending. J. Phys. Chem. B, 109, 7659-7663.
http://dx.doi.org/10.1021/jp050391+
[17]
Mulder, M. (1996) Basic Principles of Membrane Technology. Kluwer Academic Publishers, Dordrecht.
http://dx.doi.org/10.1007/978-94-009-1766-8
[18]
Yao, W.W., Tan, Y.S., Low, Y.X., Yuen, J.S.Y., Lau, C. and Webster, R.D. (2009) Voltammetrically Controlled Electron Transfer Reactions from Alkanethiol Modified Gold Electrode Surfaces to Low Molecular Weight Molecules Deposited within Lipid (Lecithin) Bilayers. J. Phys. Chem. B, 113, 15263-15271.
http://dx.doi.org/10.1021/jp905324q
[19]
Tien, H.T. and Ottova, A.L. (1998) Supported Planar Lipid Biolayers (s-BLMs) as Electrochemical Biosensors. Electrochimica Acta, 43, 3587-3610.
http://dx.doi.org/10.1016/S0013-4686(98)00107-8
[20]
Sandlfer, J.R. (1981) Silver/Silver Chloride Electrodes Coated with Cellulose Acetate for the Elimination of Bromide and Uric Acid Interferences. Anal. Chem., 53, 1164-1170.
http://dx.doi.org/10.1021/ac00231a006
[21]
Tien, H.T. and Ottova, A.L. (1998) Supported Planar Lipid Biolayers (s-BLMs) as Electrochemical Biosensors. Electrochimica Acta, 43, 3587-3610.
http://dx.doi.org/10.1016/S0013-4686(98)00107-8
[22]
Thanonkaew, A., Benjakul, S., Visessanguan, W. and Decker, E.A. (2006) Development of Yellow Pigmentation in Squid (Loligo peali) as a Result of Lipid Oxidation. J. Agric. Food Chem., 54, 956-962.
http://dx.doi.org/10.1021/jf052107h