[1]
He, X., Yan, S., Hu, Y. and Zhang, H.J. (2003) Learning a Locality Preserving Subspace for Visual Recognition. IEEE International Conf. Computer Vision.
[2]
Belkin, M. and Niyogi, P. (2001) Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In: Advances in Neural Information Processing Systems.
[3]
Xu, Y., Feng, G. and Zhao, Y. (2009) One Improvement to Two-Dimensional Locality Preserving Projection Method for Use with Face Recognition. Neurocomputing, 73, 245-249.
http://dx.doi.org/10.1016/j.neucom.2009.09.010
[4]
Cai, D., He, X. and Han, J. (2005) Document Clustering Using Locality Preserving Indexing, IEEE Trans. Knowledge and Data Engineering, 17, 1624-1637.
http://dx.doi.org/10.1109/TKDE.2005.198
[5]
Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q. and Lin, S. (2007) Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Analysis and Machine Intelligence, 29, 40-51.
http://dx.doi.org/10.1109/TPAMI.2007.250598
[6]
Cai, D., He, X., Zhou, K., Han, J. and Bao, H. (2007) Locality Sensitive Discriminant Analysis. In: Proc. International Joint Conf. Artificial Intelligence (IJCAI’07).
[7]
Gao, Q., Xu, H., Li, Y. and Xie, D. (2010) Two-Dimensional Supervised Local Similarity and Diversity Projection. Pattern Recognition, 43, 3359-3363.
http://dx.doi.org/10.1016/j.patcog.2010.05.017
[8]
Luo, D., Ding, C., Nie, F. and Huang, H. (2011) Cauchy Graph Embedding. Int. Conf. Machine Learning.
[9]
Gao, Q., Zhang, H. and Liu, J. (2012) Two-Dimensional Margin, Similarity and Variation Embedding. Neurocomputing, 86, 179-183.
http://dx.doi.org/10.1016/j.neucom.2012.01.023
[10]
Weinberger, K.Q. and Saul, L.K. (2006) An Introduction Tonon-linear Dimensionality Reduction by Maximum Variance Unfolding. In: Proc. the 21th AAAI, 1683-1686.
[11]
Cai, D., He, X. and Han, J. (2007) Semi-Supervised Discriminant Analysis. IEEE Int. Conf. Computer Vision, Rio de Janeiro, 1-7.
http://dx.doi.org/10.1109/iccv.2007.4408856
[12]
Belkin, M. and Niyogi, P. (2001) Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In Advances in Neural Information Processing Systems, MIT USA, 585-591.
[13]
Luo, D., Ding, C., Nie, F. and Huang, H. (2011) Cauchy Graph Embedding. Proc. Int. Conf. Machine Learning, Bellevue, 1-8.
[14]
Gao, Q., Liu, J., Zhang, H., Hou, J. and Yang, X. (2012) Enhanced Fisher Discriminant Criterion for Image Recognition. Pattern Recognition, 45, 3717-3724.
http://dx.doi.org/10.1016/j.patcog.2012.03.024
[15]
Gao, Q., Gao, F., Zhang, H., Hao, X. and Wang, X. (2013) Two-Dimensional Maximum Local Variation Based on Image Euclidean Distance for Face Recognition. IEEE Trans. Image Processing, 22, 3807-3817.
http://dx.doi.org/10.1109/TIP.2013.2262286
[16]
Belhumeur, N., Hepanha, J.P. and Kriegman, D.J. (1997) Eigenfaces vs. fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intel-ligence, 19, 711-720.
http://dx.doi.org/10.1109/34.598228
[17]
Belhumeur, N., Hepanha, J.P. and Kriegman, D.J. (1997) Eigenfaces vs. Fi-sherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. Pattern Analysis and Machine Intelligence, 19, 711-720.
http://dx.doi.org/10.1109/34.598228
[18]
Yan, S. Xu, D., Zhang, B., Zhang, H., Yang, Q. and Lin, S. (2007) Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Trans. Pattern Analysis and Machine Intelligence, 29, 40-51.
http://dx.doi.org/10.1109/TPAMI.2007.250598
[19]
Cai, D., He, X., Zhou, K., Han, J. and Bao, H. (2007) Locality Sensitive Discriminant Analysis. In: Proc. Int. Joint Conf. Artificial Intelligence, San Francisco, 708-713.
[20]
Chen, J., Ye, J. and Li, Q. (2007) Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction. IEEE Conf. Computer Visual and Pattern Recognition, Minneapolis, 1-8.
[21]
http://www1.cs.columbia.edu/CAVE/software/softlib/coil20.php