[1]
Shang, C., Yang, F., Huang, D.X. and Lu, W.X. (2014) Data-Driven Soft Sensor Development Based on Deep Learning. Journal of Process Control, 24, 223-233.
http://dx.doi.org/10.1016/j.jprocont.2014.01.012
[2]
Pao, Y.H. and Takefuji, Y. (1992) Functional-Link Net Computing, Theory, System Architecture, and Functionalities. IEEE Computer, 25, 76-79.
http://dx.doi.org/10.1109/2.144401
[3]
Igelnik, B. and Pao, Y.H. (1995) Stochastic Choice of Basis Functions in Adaptive Function Approximation and the Functional-Link Net. IEEE Trans. Neural Network, 6, 1320-1329.
http://dx.doi.org/10.1109/72.471375
[4]
Huang, G.B., Chen, L. and Siew, C.K. (2006) Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes. IEEE Transactions on Neural Networks, 17, 879-892.
http://dx.doi.org/10.1109/TNN.2006.875977
[5]
Tapson, J. and Schaik, A.V. (2013) Learning the Pseudoinverse So-lution to Network Weights. Neural Networks, 45, 94-100.
http://dx.doi.org/10.1016/j.neunet.2013.02.008
[6]
Alhamdoosh, M. and Wang, D.H. (2014) Fast Decorrelated Neural Network Ensembles with Random Weights. Information Sciences, 264, 104-117.
http://dx.doi.org/10.1016/j.ins.2013.12.016
[7]
Bartlett, P.L. (1997) For Valid Generalization, the Size of the Weights Is More Important Than the Size of the Network. IEEE Conference on Neural Information Processing Systems, MIT Press, Cambridge, 134-140.
[8]
Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. (2007) Greedy Layer-Wise Training of Deep Networks. Advances in Neural Information Processing Systems, MIT Press, Cambridge, 153-160.
[9]
de la Rosa, E. and Yu, W. (2015) Nonlinear System Identification Using Deep Learning and Randomized Algorithms. IEEE International Conference on Information and Automation (ICIA2015), Lijing, 274-279.
http://dx.doi.org/10.1109/ICInfA.2015.7279298
[10]
Liu, H.W., Sun, J.G., Liu, L. and Zhang, H.J. (2009) Feature Se-lection with Dynamic Mutual Information. Pattern Recognition, 42, 1330-1339.
http://dx.doi.org/10.1016/j.patcog.2008.10.028
[11]
Peng, H.C., Long, F.H. and Ding, C. (2005) Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1226-1238.
http://dx.doi.org/10.1109/TPAMI.2005.159
[12]
Tan, C. and Li, M.L. (2008) Mutual Information-Induced Interval Selection Combined with Kernel Partial Least Squares for Near-Infrared Spectral Calibration. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 1266-1273.
http://dx.doi.org/10.1016/j.saa.2008.03.033
[13]
Tang, J., Chai, T.Y., Yu, W. and Zhao, L.J. (2012) Feature Extraction and Selection Based on Vibration Spectrum with Application to Estimate the Load Parameters of Ball Mill in Grinding Process. Control Engineering Practice, 20, 991- 1004.
http://dx.doi.org/10.1016/j.conengprac.2012.03.020
[14]
Battiti, R. (1994) Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Transaction on Neural Network, 5, 537-550.
http://dx.doi.org/10.1109/72.298224
[15]
Yeh, I.C. (1998) Modeling of Strength of High Performance Concrete Using Artificial Neural Networks. Cement and Concrete Research, 28, 1797-1808.
http://dx.doi.org/10.1016/S0008-8846(98)00165-3