[1]
Grassly, N.C. and Fraser, C. (2008) Mathematical Models of Infectious Disease Transmission. Nature Reviews Microbiology, 6, 477-487.
http://dx.doi.org/10.1038/nrmicro1845
[2]
Anderson, R.M. and Roy, R.M. (1991) Infectious Diseases of Humans. Oxford University Press, Oxford.
[3]
Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
http://dx.doi.org/10.1038/30918
[4]
Moore, C. and Newman, M.E.J. (2000) Epidemics and Percolation in Small-World Networks. Physical Review E, 61, 5678-5682.
http://dx.doi.org/10.1103/PhysRevE.61.5678
[5]
Kleczkowski, A. and Grenfel, B.T. (1999) Mean-Field-Type Equations for Spread of Epidemics: The “Small World” Model. Physica A, 274, 355-360.
http://dx.doi.org/10.1016/S0378-4371(99)00393-3
[6]
Pastor-Satorras, R. and Vespignani, A. (2001) Epidemic Spreading in Scale-free Networks. Physical Review Letters, 86, 3200-3203.
http://dx.doi.org/10.1103/PhysRevLett.86.3200
[7]
Pastor-Satorras, R. and Vespignani, A. (2001) Epidemic Dynamics and Endemic States in Complex Networks. Physical Review E, 63, 1-9.
http://dx.doi.org/10.1103/physreve.63.066117
[8]
Xia, C.Y., Liu, Z.X., Chen, Z.Q. and Yuan, Z.Z. (2009) Spreading Behavior of SIS Model with Non-Uniform Transmission on Scale-Free Networks. The Journal of China Universities of Posts and Telecommunications, 16, 27-31.
http://dx.doi.org/10.1016/S1005-8885(08)60173-9
[9]
Newman, M.E.J. (2002) The Spread of Epidemic Disease on Networks. Physical Review E, 66, 1-12.
http://dx.doi.org/10.1103/physreve.66.016128
[10]
Abramson, G. and Kuperman, M. (2001) Small World Effect in an Epidemiological Model. Physical Review Letters, 86, 1-4.
[11]
Moreno, Y., Gomez, J.B. and Pacheco, A.F. (2003) Epidemic Incidence in Correlated Complex Networks. Physical Review E, 68, 1-4.
http://dx.doi.org/10.1103/physreve.68.035103
[12]
Grais, R.F., Ellis, J.H. and Glass, G.E. (2003) Assessing the Impact of Airline Travel on the Geographic Spread of Pandemic. European Journal of Epidemiology, 18, 1065-1072.