[1]
Chiles, J.P. and Pierre, D. (1999) Geostatistics: Modeling Spatial Uncertainty. Wiley, New York.
http://dx.doi.org/10.1002/9780470316993
[2]
Oliver, M.A. (2010) Ch. B6: The Variogram & Kriging. In: Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications, Springer, Berlin, 319-352.
http://dx.doi.org/10.1007/978-3-642-03647-7_17
[3]
Zhang, R.Z. (2005) Spatial Variability Theory and Application. Science Press, Beijing.
[4]
Koza, J.P. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge.
[5]
Gandomi, A.H. and Alavi, A.M. (2012) A New Multi-Gene Genetic Programming Approach to Nonlinear System Modeling. Part I: Materials and Structural Engineering Problems. Neural Computing and Applications, 21, 171-187.
http://dx.doi.org/10.1007/s00521-011-0734-z
[6]
Searson, D.P., Leahy, D.E. and Willis, M.J. (2010) GPTIPS: An Open Source Genetic Programming Toolbox for Multigene Symbolic Regression. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2010), Hong Kong, 77-80.
[7]
Garg, A., Garg, A. and Tai, M. (2014) A Multi-Genetic Programming Model for Estimating Stress-Dependent Soil Water Retention Curves. Computational Geosciences, 18, 45-56.
http://dx.doi.org/10.1007/s10596-013-9381-z
[8]
Clark, I., Harper, W.V. and Ohio, C. (2000) Practical Geostatistics 2000. Ecosse North America Llc, Greyden Press.
[9]
Casal, R.F. and Fernández, M.F. (2014) Nonparametric Bias-Corrected Variogram Estimation under Non-Constant Trend. Stochastic Environmental Research and Risk Assessment, 28, 1247-1259.
http://dx.doi.org/10.1007/s00477-013-0817-8
[10]
Lark, R.M. (2000) Estimating Variogram of Soil Properties by the Method-of-Moments and Maximum Likelihood. European Journal of Soil Science, 51, 717-728.
http://dx.doi.org/10.1046/j.1365-2389.2000.00345.x