[1]
Li, G.J., Lu, F.F., Wei, X., Song, X.P., Sun, Z.B., et al. (2013) Nanoporous Ag-CeO2 Ribbons Prepared by Chemical Deal-loying and Their Electrocatalytic Properties. Journal of Materials Chemistry A, 1, 4974-4981.
http://dx.doi.org/10.1039/c3ta01506h
[2]
Moreno, M., Bergamini, L., Baronetti, G.T., Laborde, M.A. and Mari?o, F.J. (2010) Mechanism of CO Oxidation over CuO/CeO2 Catalysts. International Journal of Hydrogen Energy, 35, 5918-5924.
http://dx.doi.org/10.1016/j.ijhydene.2009.12.107
[3]
Gu, X.R., Li, H., Liu, L.C., Tang, C.J., Gao, F. and Dong, L. (2014) Promotional Effect of CO Pretreatment on CuO/CeO2 Catalyst for Catalytic Reduction of NO by CO. Journal of Rare Earth, 32, 139.
http://dx.doi.org/10.1016/S1002-0721(14)60043-0
[4]
Zheng, X.C., Zhang, X.L., Wang, X.Y., Wang, S.R. and Wu, S.H. (2005) Preparation and Characterization of CuO/ CeO2 Catalysts and Their Applications in Low-Temperature CO Oxidation. Applied Catalysis A: General, 295, 142- 149.
http://dx.doi.org/10.1016/j.apcata.2005.07.048
[5]
Kim, D.H. and Cha, J.E. (2003) A CuO-CeO2 Mixed-Oxide Catalyst for CO Clean-Up by Selective Oxidation in Hydrogen-Rich Mixtures. Catalysis Letters, 86, 107-112.
http://dx.doi.org/10.1023/A:1022671327794
[6]
Bruix, A., Rodriguez, J.A., Ram’?rez, P.J., Sena-nayake, S.D., Evans, J., Park, J.B., Stacchiola, D., Liu, P., Hrbek, J. and Illas, F. (2012) A New Type of Strong Metal-Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO(X)/TiO2 (110) Catalysts. Journal of the American Chemical Society, 134, 8968-8974.
http://dx.doi.org/10.1021/ja302070k
[7]
Marbán, G., López, I. and Valdés-Solís, T. (2009) Preferential Oxidation of CO by CuOX/CeO2 Nanocatalysts Prepared by SACOP. Mechanisms of Deactivation under the Reactant. Applied Catalysis A: Gen-eral, 361, 160-169.
http://dx.doi.org/10.1016/j.apcata.2009.04.014
[8]
Shen, W.H., Dong, X.P., Zhu, Y.F., Chen, H.R. and Shi, J.L. (2005) Mesoporous CeO2 and CuO-Loaded Mesoporous CeO2: Synthesis, Characterization, and CO Catalytic Oxidation Property. Microporous and Mesoporous Materials, 85, 157-162.
http://dx.doi.org/10.1016/j.micromeso.2005.06.006
[9]
Wang, Z.F., Wang, L.J., Qin, C.L., Liu, J.Y., Li, Y.Y. and Zhao, W.M. (2014) Tailored Dealloying Products of Cu- Based Metallic Glasses in Hydrochloric Acid Solutions. Materials Research, 17, 1003-1009.
http://dx.doi.org/10.1590/S1516-14392014005000089
[10]
Jia, A.-P., Jiang, S.-Y., Lu, J.-Q., and Luo, M.-F. (2010) Study of Catalytic Activity at the CuO-CeO2 Interface for CO Oxidation. The Journal of Physical Chemistry C, 114, 21605-21610.
http://dx.doi.org/10.1021/jp108556u
[11]
Chen, G.X., Li, Q.L., Wei, Y.C., Fang, W.P. and Yang, Y.Q. (2013) Low Tem-perature CO Oxidation on Ni-Promoted CuO-CeO2 Catalysts. Chinese Journal of Catalysis, 34, 322-329.
http://dx.doi.org/10.1016/S1872-2067(11)60468-3
[12]
Spanier, J.E., Robinson, R.D., Zhang, F., Chan, S.-W. and Herman, I.P. (2001) Size-Dependent Properties of CeO2?y Nanoparticles as Studied by Raman Scattering. Physical Review B, 64, 245407-245414.
http://dx.doi.org/10.1103/PhysRevB.64.245407
[13]
López Cámara, A., Cortés Corberán, V., Barrio, L., Zhou, G., Si, R. and Hanson, J.C. (2014) Improving the CO-PROX Performance of Inverse CeO2/CuO Catalysts: Doping of the CuO Component with Zn. The Journal of Physical Chemistry C, 118, 9030-9041.
http://dx.doi.org/10.1021/jp5009384
[14]
Luo, M.-F., Zhong, Y.-J., Yuan, X.-X. and Zheng, X.-M. (1997) TPR and TPD Studies of CuO/CeO2 for Low Temperature CO Oxidation. Applied Catalysis A: General, 162, 121-131.
http://dx.doi.org/10.1016/S0926-860X(97)00089-6