[1]
Oh, K., Li, T., Cheng, H., Xie, Y. and Yonemochi, S. (2013) Study on Tolerance and Accumulation Potential of Biofuel Crops for Phytoremediation of Heavy Metals. International Journal of Environmental Science and Development, 4, 152-156.
http://dx.doi.org/10.7763/IJESD.2013.V4.325
[2]
EPA (2000) Introduction to Phytoremediation. EPA/600/R-99/107.
[3]
Jiang, C.Y., Sheng, X.F., Qian, M. and Wang, Q.Y. (2008) Isolation and Characterization of a Heavy Metal-Resistant Burkholderia sp. from Heavy Metal-Contaminated Paddy Field Soil and Its Potential in Promoting Plant Growth and Heavy Metal Accumulation in Metal-Polluted Soil. Chemosphere, 72, 157-164.
http://dx.doi.org/10.1016/j.chemosphere.2008.02.006
[4]
Oh, K., Li, T., Cheng, H.Y., Hu, X., Lin, Q. and Xie, Y. (2013) A Primary Study on Assessment of Phytoremediation Potential of Biofuel Crops in Heavy Metal Contaminated Soil. Applied Mechanics and Materials, 295-298, 1135-1138.
http://dx.doi.org/10.4028/www.scientific.net/AMM.295-298.1135
[5]
Oh, K., Cao, T., Li, T. and Cheng, H. (2014) Study on Application of Phytoremediation Technology in Management and Remediation of Contaminated Soils. Journal of Clean Energy Technology, 2, 216-220.
http://dx.doi.org/10.7763/JOCET.2014.V2.126
[6]
Chintakovid, W., Visoottiviseth, P., Khokiattiwong, S. and Lauengsuchonkul, S. (2008) Potential of the Hybrid Marigolds for Arsenic Phytoremediation and Income Generation of Remediators in Ron Phibun District, Thailand. Chemosphere, 70, 1532-1537.
http://dx.doi.org/10.1016/j.chemosphere.2007.08.031
[7]
Li, T., Cheng, H., Oh, K., et al. (2013) Effect of Humic Acid and Bacterial Manure on Distribution of Heavy Metals in Different Organs of Maize. International Journal of Environmental Science and Development, 5, 393-397.
[8]
Cao, T.H., Mu, Z.S., Wang, S.P., Yan, H.Y., Liang, X.H., Fan, Z.W. and Jin, R.D. (2012) Screening of Lead Resistant Microorganism and Preliminary Study on the Effect of Repairing Lead Polluted Soil by EDDS Chelating Induced Ryegrass. Journal of Jilin Agricultural Sciences, 37, 34-36. (In Chinese)
http://dx.doi.org/10.7763/IJESD.2014.V5.516
[9]
Aremu, M.O., Ogundola, A.K. and Emmanuel, O.T. (2013) Phytoextraction Potential of Vetiveria zizanioides on Heavy Metals. European Scientific Journal, 9, 1857-7431.
[10]
Metwali, M.R., Gowayed, S.M.H., Al-Maghrabi, O.A. and Mosleh, Y.Y. (2013) Evaluation of Toxic Effect of Copper and Cadmium on Growth, Physiological Traits and Protein Profile of Wheat (Triticum aestivium L.), Maize (Zea mays L.) and Sorghum (Sorghum bicolor L.). World Applied Sciences Journal, 21, 301-314.
[11]
Soudek, P., Petrová, ?., Vaňková, R., Song, J. and Vaněk, T. (2014) Accumulation of Heavy Metals Using Sorghum sp. Che-mosphere, 104, 15-24.
http://dx.doi.org/10.1016/j.chemosphere.2013.09.079
[12]
Su, Y., Han, F.X., Sridhar, B.B.M. and Monts, D.L. (2005) Phytotoxicity and Phytoaccumulation of Trivalent and Hexavalent Chromium in Brake Fern. Environ Toxicol Chem, 24, 2019-2026.
http://dx.doi.org/10.1897/04-329R.1
[13]
Angelova, V.R., Ivanova, R.V., De-libaltova, A.V. and Ivanov, K.I. (2011) Use of Sorghum Crops for in Situ Phytoremediation of Polluted Soils. Journal of Agricultural Science and Technology A, 1, 693-702.
[14]
Mohebbi, A. (2012) Capability of Heavy Metals Absorption by Corn, Alfalfa and Sunflower Intercropping Date Palm. Advances in Environmental Biology, 6, 2886-2893.
[15]
Wang, J., Yang, N., Dong, E., Wang, L., Wu, A., Ding, Y., Bai, W. and Jiao, X. (2013) Effect of Different Plant Density on Growth, Yield and Nutrient Uptake of Sorghum. Chinese Agricultural Science Bulletin, 29, 253-258.
[16]
Marchiol, L., Fellet, G., Perosa, D., Zaccheo, P. and Zerbi, G. (2010) Phytoremediation of Soils Polluted by Heavy Metals and Metalloids Using Crops: (ii) Early Results from the in Situ Experiment of Torviscosa (Udine). Italian Journal of Agronomy, 3, 15-29.
http://dx.doi.org/10.4081/ija.2010.s2.15