[1]
Cunningham, M.W. (2000) Pathogenesis of Group A Streptococcal Infections. Clinical Microbiology Review, 13, 470- 511.
http://dx.doi.org/10.1128/CMR.13.3.470-511.2000
[2]
Graham, M.R., Smoot, L.M., Migliaccio, C.A., Virtaneva, K., Sturdevant, D.E., Porcella, S.F., et al. (2002) Virulence Control in Group A Streptococcus by a Two-Component Gene Regulatory System: Global Expression Profiling and in Vivo Infection Modelling. Proceedings of the National Academy of Sciences of the United States of America, 99, 13855-13860.
http://dx.doi.org/10.1073/pnas.202353699
[3]
Shelburne 3rd, S.A., Sumby, P., Sitkiewicz, I., Granville, C., DeLeo, F.R. and Musser, J.M. (2005) Central Role of a Bacterial Two-Component Gene Regulatory System of Previously Unknown Function in Pathogen Persistence in Human Saliva. Proceedings of the National Academy of Sciences of the United States of America, 102, 16037-16042.
http://dx.doi.org/10.1073/pnas.0505839102
[4]
Minami, M., Torii, S. and Ohta, M. (2014) CovS Modulates the Antimi-crobial Susceptibility of Streptococcus pyogenes. Scientific Journal of Microbiology, 3, 1-4.
[5]
Minami, M., Kamimura, T., Isaka, M., Tatsuno, I., Ohta, M. and Hasegawa, T. (2010) Clindamycin-Induced CovS- Mediated Regulation of the Production of Virulent Exoproteins Streptolysin O, NAD Glycohydrolase, and Streptokinase in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy, 54, 98-102.
http://dx.doi.org/10.1128/AAC.00804-09
[6]
Minami, M., Takase, H., Sakakibara, R., Imura, T., Morita, H., Kanemaki, N., et al. (2014) LicT Modulates Biofilm Formation of Streptococcus pyogenes. Journal of Biosciences and Medicines, in Press.
http://dx.doi.org/10.4236/jbm.2014.29001
[7]
Dalton, T.L. and Scott, J.R. (2004) CovS Inactivates CovR and Is Required for Growth under Conditions of General Stress in Streptococcus pyogenes. Journal of Bacteriology, 186, 3928-3937.
http://dx.doi.org/10.1128/JB.186.12.3928-3937.2004
[8]
Gutmann, L., Williamson, R. and Tomasz A. (1981) Physiological Properties of Penicillin-Binding Proteins in Group A Streptococci. Antimicrobial Agents and Chemotherapy, 19, 872-880.
http://dx.doi.org/10.1128/AAC.19.5.872
[9]
Chambers, H.F. (1999) Penicillin-Binding Protein-Mediated Resistance in Pneumococci and Staphylococci. The Journal of Infectious Diseases, 179, S353-S359.
http://dx.doi.org/10.1086/513854
[10]
Shimazu, K., Takahashi, Y., Uchikawa, Y., Shimazu, Y., Yajima, A., Takashima, E., et al. (2008) Identification of the Streptococcus gordonii glmM Gene Encoding Phosphoglucosamine Mutase and Its Role in Bacterial Cell Morphology, Biofilm Formation, and Sensitivity to Antibiotics. FEMS Immunology Medical Microbiology, 53, 166-177.
[11]
Glanzmann, P., Gustafson, J., Komatsuzawa, H., Ohta, K. and Berger B?chi, B. (1999) glmM Operon and Methicillin- Resistant glmM Suppressor Mutants in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 43, 240-245.
http://dx.doi.org/10.1111/j.1574-695X.2008.00410.x
[12]
Kuroda, M., Kuroda, H., Oshima, T., Takeuchi, F., Mori, H. and Hiramatsu, K. (2003) Two-Component System VraSR Positively Modulates the Regulation of Cell-Wall Biosynthesis Pathway in Staphylococcus aureus. Molecular Microbiology, 49, 807-821.
http://dx.doi.org/10.1046/j.1365-2958.2003.03599.x