top
Articles
  • OpenAccess
  • The Two-Component Sensor Protein CovS Affects Penicilling Susceptibility by Modulation of Cell-Wall Synthesis in Streptococcus pyogenes  [MIC 2015]
  • DOI: 10.4236/jbm.2015.33008   PP.50 - 55
  • Author(s)
  • Masaaki Minami, Syun Syun Torii, Michio Ohta
  • ABSTRACT
  • In Streptococcus pyogenes, we have described the two-component signal transduction sensor and regulatory systems, CovR/S affect the antimicrobial susceptibility including penicillin G before. But the mechanism how two-component sensor protein CovS modulates penicillin G susceptibility has not been elucidated till date. This study aimed to determine how the CovS affected penicillin G susceptibility in Streptococcus pyogenes by northern blot analysis. At first, we investigated the covS mRNA expression under penicillin G induction. We found that the decrease of covS mRNA expression under Penicillin G stimulation. Next we investigated the expression of cell wall synthesis gene, pbp2a and glmM with use of covS knockout mutants from emm1 Streptococcus pyogenes strain 1529. We found that the cell-wall synthesis gene expression of the ?covS mutant strain were lower than that of the wild-type strain. Furthermore the expression of glmM mRNA gene was lower than the expression of pbp2a mRNA gene in the ?covS mutant strain. The covS-complemented strain almost restored the mRNA expression compared to covS mutant strain. The two-component sensor protein CovS affects the susceptibility to penicillin G in Streptococcus pyogenes by modulation of cell-wall synthesis.

  • KEYWORDS
  • Streptococcus Pyogenes, CovS, pbp2a, glmM
  • References
  • [1]
    Cunningham, M.W. (2000) Pathogenesis of Group A Streptococcal Infections. Clinical Microbiology Review, 13, 470- 511.
    http://dx.doi.org/10.1128/CMR.13.3.470-511.2000
    [2]
    Graham, M.R., Smoot, L.M., Migliaccio, C.A., Virtaneva, K., Sturdevant, D.E., Porcella, S.F., et al. (2002) Virulence Control in Group A Streptococcus by a Two-Component Gene Regulatory System: Global Expression Profiling and in Vivo Infection Modelling. Proceedings of the National Academy of Sciences of the United States of America, 99, 13855-13860.
    http://dx.doi.org/10.1073/pnas.202353699
    [3]
    Shelburne 3rd, S.A., Sumby, P., Sitkiewicz, I., Granville, C., DeLeo, F.R. and Musser, J.M. (2005) Central Role of a Bacterial Two-Component Gene Regulatory System of Previously Unknown Function in Pathogen Persistence in Human Saliva. Proceedings of the National Academy of Sciences of the United States of America, 102, 16037-16042.
    http://dx.doi.org/10.1073/pnas.0505839102
    [4]
    Minami, M., Torii, S. and Ohta, M. (2014) CovS Modulates the Antimi-crobial Susceptibility of Streptococcus pyogenes. Scientific Journal of Microbiology, 3, 1-4.
    [5]
    Minami, M., Kamimura, T., Isaka, M., Tatsuno, I., Ohta, M. and Hasegawa, T. (2010) Clindamycin-Induced CovS- Mediated Regulation of the Production of Virulent Exoproteins Streptolysin O, NAD Glycohydrolase, and Streptokinase in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy, 54, 98-102.
    http://dx.doi.org/10.1128/AAC.00804-09
    [6]
    Minami, M., Takase, H., Sakakibara, R., Imura, T., Morita, H., Kanemaki, N., et al. (2014) LicT Modulates Biofilm Formation of Streptococcus pyogenes. Journal of Biosciences and Medicines, in Press.
    http://dx.doi.org/10.4236/jbm.2014.29001
    [7]
    Dalton, T.L. and Scott, J.R. (2004) CovS Inactivates CovR and Is Required for Growth under Conditions of General Stress in Streptococcus pyogenes. Journal of Bacteriology, 186, 3928-3937.
    http://dx.doi.org/10.1128/JB.186.12.3928-3937.2004
    [8]
    Gutmann, L., Williamson, R. and Tomasz A. (1981) Physiological Properties of Penicillin-Binding Proteins in Group A Streptococci. Antimicrobial Agents and Chemotherapy, 19, 872-880.
    http://dx.doi.org/10.1128/AAC.19.5.872
    [9]
    Chambers, H.F. (1999) Penicillin-Binding Protein-Mediated Resistance in Pneumococci and Staphylococci. The Journal of Infectious Diseases, 179, S353-S359.
    http://dx.doi.org/10.1086/513854
    [10]
    Shimazu, K., Takahashi, Y., Uchikawa, Y., Shimazu, Y., Yajima, A., Takashima, E., et al. (2008) Identification of the Streptococcus gordonii glmM Gene Encoding Phosphoglucosamine Mutase and Its Role in Bacterial Cell Morphology, Biofilm Formation, and Sensitivity to Antibiotics. FEMS Immunology Medical Microbiology, 53, 166-177.
    [11]
    Glanzmann, P., Gustafson, J., Komatsuzawa, H., Ohta, K. and Berger B?chi, B. (1999) glmM Operon and Methicillin- Resistant glmM Suppressor Mutants in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 43, 240-245.
    http://dx.doi.org/10.1111/j.1574-695X.2008.00410.x
    [12]
    Kuroda, M., Kuroda, H., Oshima, T., Takeuchi, F., Mori, H. and Hiramatsu, K. (2003) Two-Component System VraSR Positively Modulates the Regulation of Cell-Wall Biosynthesis Pathway in Staphylococcus aureus. Molecular Microbiology, 49, 807-821.
    http://dx.doi.org/10.1046/j.1365-2958.2003.03599.x

Engineering Information Institute is the member of/source content provider to

http://www.scirp.org http://www.hanspub.org/ http://www.crossref.org/index.html http://www.oalib.com/ http://www.ebscohost.com/ http://www.proquest.co.uk/en-UK/aboutus/default.shtml http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&Full=journal%20of%20Bioequivalence%20%26%20Bioavailability http://publishers.indexcopernicus.com/index.php