• OpenAccess
  • The Two-Component Sensor Protein CovS Affects Penicilling Susceptibility by Modulation of Cell-Wall Synthesis in Streptococcus pyogenes  [MIC 2015]
  • DOI: 10.4236/jbm.2015.33008   PP.50 - 55
  • Author(s)
  • Masaaki Minami, Syun Syun Torii, Michio Ohta
  • In Streptococcus pyogenes, we have described the two-component signal transduction sensor and regulatory systems, CovR/S affect the antimicrobial susceptibility including penicillin G before. But the mechanism how two-component sensor protein CovS modulates penicillin G susceptibility has not been elucidated till date. This study aimed to determine how the CovS affected penicillin G susceptibility in Streptococcus pyogenes by northern blot analysis. At first, we investigated the covS mRNA expression under penicillin G induction. We found that the decrease of covS mRNA expression under Penicillin G stimulation. Next we investigated the expression of cell wall synthesis gene, pbp2a and glmM with use of covS knockout mutants from emm1 Streptococcus pyogenes strain 1529. We found that the cell-wall synthesis gene expression of the ?covS mutant strain were lower than that of the wild-type strain. Furthermore the expression of glmM mRNA gene was lower than the expression of pbp2a mRNA gene in the ?covS mutant strain. The covS-complemented strain almost restored the mRNA expression compared to covS mutant strain. The two-component sensor protein CovS affects the susceptibility to penicillin G in Streptococcus pyogenes by modulation of cell-wall synthesis.

  • Streptococcus Pyogenes, CovS, pbp2a, glmM
  • References
  • [1]
    Cunningham, M.W. (2000) Pathogenesis of Group A Streptococcal Infections. Clinical Microbiology Review, 13, 470- 511.
    Graham, M.R., Smoot, L.M., Migliaccio, C.A., Virtaneva, K., Sturdevant, D.E., Porcella, S.F., et al. (2002) Virulence Control in Group A Streptococcus by a Two-Component Gene Regulatory System: Global Expression Profiling and in Vivo Infection Modelling. Proceedings of the National Academy of Sciences of the United States of America, 99, 13855-13860.
    Shelburne 3rd, S.A., Sumby, P., Sitkiewicz, I., Granville, C., DeLeo, F.R. and Musser, J.M. (2005) Central Role of a Bacterial Two-Component Gene Regulatory System of Previously Unknown Function in Pathogen Persistence in Human Saliva. Proceedings of the National Academy of Sciences of the United States of America, 102, 16037-16042.
    Minami, M., Torii, S. and Ohta, M. (2014) CovS Modulates the Antimi-crobial Susceptibility of Streptococcus pyogenes. Scientific Journal of Microbiology, 3, 1-4.
    Minami, M., Kamimura, T., Isaka, M., Tatsuno, I., Ohta, M. and Hasegawa, T. (2010) Clindamycin-Induced CovS- Mediated Regulation of the Production of Virulent Exoproteins Streptolysin O, NAD Glycohydrolase, and Streptokinase in Streptococcus pyogenes. Antimicrobial Agents and Chemotherapy, 54, 98-102.
    Minami, M., Takase, H., Sakakibara, R., Imura, T., Morita, H., Kanemaki, N., et al. (2014) LicT Modulates Biofilm Formation of Streptococcus pyogenes. Journal of Biosciences and Medicines, in Press.
    Dalton, T.L. and Scott, J.R. (2004) CovS Inactivates CovR and Is Required for Growth under Conditions of General Stress in Streptococcus pyogenes. Journal of Bacteriology, 186, 3928-3937.
    Gutmann, L., Williamson, R. and Tomasz A. (1981) Physiological Properties of Penicillin-Binding Proteins in Group A Streptococci. Antimicrobial Agents and Chemotherapy, 19, 872-880.
    Chambers, H.F. (1999) Penicillin-Binding Protein-Mediated Resistance in Pneumococci and Staphylococci. The Journal of Infectious Diseases, 179, S353-S359.
    Shimazu, K., Takahashi, Y., Uchikawa, Y., Shimazu, Y., Yajima, A., Takashima, E., et al. (2008) Identification of the Streptococcus gordonii glmM Gene Encoding Phosphoglucosamine Mutase and Its Role in Bacterial Cell Morphology, Biofilm Formation, and Sensitivity to Antibiotics. FEMS Immunology Medical Microbiology, 53, 166-177.
    Glanzmann, P., Gustafson, J., Komatsuzawa, H., Ohta, K. and Berger B?chi, B. (1999) glmM Operon and Methicillin- Resistant glmM Suppressor Mutants in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 43, 240-245.
    Kuroda, M., Kuroda, H., Oshima, T., Takeuchi, F., Mori, H. and Hiramatsu, K. (2003) Two-Component System VraSR Positively Modulates the Regulation of Cell-Wall Biosynthesis Pathway in Staphylococcus aureus. Molecular Microbiology, 49, 807-821.

Engineering Information Institute is the member of/source content provider to