[1]
Tang L., LutjeSpelberg J.H., Fraaije M.W. and Janssen D.B. (2003) Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter. Biochemistry, 42(18):5378-5386.
[2]
Janssen D.B., Majerić-Elenkov M., Hasnaoui G., Hauer B. and LutjeSpelberg J.H. (2006) Enantioselective formation and ring-opening of epoxides catalysed by halohydrin dehalogenases. Biochemical Society Transactions, 34(2):291-295.
[3]
Spelberg J.H., Van HylckamaVlieg J.E., Tang L., Janssen D.B. and Kellogg R.M. (2001) Highlyenantioselective and regioselectivebiocatalyticazidolysis of aromatic epoxides. Organic Letters, 3(1):41-43.
[4]
Van HylckamaVlieg J.E., Tang L., LutjeSpelberg J.H., Smilda T., Poelarends G.J., Bosma T., Van Merode A.E., Fraaije M.W. and Janssen D.B. (2001) Halohydrin dehalogenases are structurally and mechanistically related to short-chain dehydrogenases/reductases. Journal of Bacteriology, 183(17):5058-5066.
[5]
Nakamura T., Nagasawa T., Yu F., Watanabe I. and Yamada H. (1994) Characterization of a novel enantioselective halohydrin hydrogen halide-lyase. Applied and environmental microbiology, 60(4):1297-1301.
[6]
De Jong R.M., Tiesinga J.J., Rozeboom H.J., Kalk K.H., Tang L., Janssen D.B. and Dijkstra B.W. (2003) Structure and mechanism of a bacterial haloalcohol dehalogenase: a new variation of the short-chain dehydrogenase/ reductase fold without an NAD(P)H binding site. The EMBO Journal, 22(19):4933-4944.
[7]
De Jong R.M., Kalk K.H., Tang L., Janssen D.B. and Dijkstra B.W. (2006) The X-ray structure of the haloalcohol dehalogenase HheA from Arthrobacter sp. strain AD2: insight into enantioselectivity and halide binding in the haloalcohol dehalogenase family. Journal of Bacteriology, 188(11):4051-4056.
[8]
Tang L., Zhu X., Zheng H., Jiang R. and MajericElenkov M. (2012) Key residues for controlling enantioselectivity of Halohydrin dehalogenase from Arthrobacter sp. strain AD2, revealed by structure-guided directed evolution. Applied and environmental microbiology,78(8):2631-2637.
[9]
Schallmey M., Floor R.J., Hauer B., Breuer M., Jekel P.A., Wijma H.J., Dijkstra B.W. and Janssen D.B. (2013) Biocatalytic and structural properties of a highly engineered halohydrin dehalogenase. Chembiochem, 14(7):870-881.
[10]
Roy A., Kucukural A. and Zhang Y. (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocol, 5(4):725-738.
[11]
Wang Z., Eickholt J. and Cheng J. (2010) MULTICOM: A Multi-Level Combination Approach to Protein Structure Prediction and its Assessment in CASP8. Bioinformatics. 26(7):882-888.
[12]
Kim D.E., Chivian D. and Baker D. (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32:W526-W531.
[13]
Zhang Y. and Skolnick J. (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research, 33(7):2302-2309.
[14]
Lovell S.C., Davis I.W., Arendall W.B. 3rd, de Bakker P.I., Word J.M., Prisant M.G., Richardson J.S. and Richardson D.C. (2003) Structure validation by Cα geometry: phi, psi and Cβ deviation. Proteins, 50(3):437-450.
[15]
Laurie A.T. and Jackson R.M. (2005) Q-Site Finder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics, 21(9):1908-1916.
[16]
Kleywegt G.J. and Jones T.A. (1996) Phi/psi-chology: Ramachandran revisited. Structure, 4(12):1395-1400.