[1]
K. Tanaka, Y. Takahashi, A. Sakaguchi, M. Umeo, S. Hayakawa, H. Tanida, T. Saito and Y. Kanai, “Vertial Profiles of Iodine-131 and Cesium-137 in Soils in Fuku-shima Perfecture Related to the Fukushima Daiichi Nuc-lear Power Station Accident, ” Geochemical Journal, Vol. 46, 2012, pp. 73-76.
[2]
A. Stohl, P. Seibert, G. wotawa, D. Arnold, J. F. Burkhart, S. Eckhardt, C. Tapia, A. Vargas and T. J. Yasunary, “Xenon-133 and Cae-sium-137 Releases into the Atmosphere from the Fuku-shima Dai-ichi Nuclear Power Plant: Determination of the Source Term, Atmospheric Dispersion, and Deposi-tion, Atmospheric Chemistry and Physics, Vol. 12, 2011, pp. 2313-2343.
doi:10.5194/acp-12-2313-2012
[3]
G. Katata, H. Terada, H. Nagai and M. Chino, “Numerical Reconstruction of High Dose Rate Zones Due to the Fukushima Dai-Ichi Nuclear Power Plant Accident”, Journal of Environment Radioactivity, Vol. 111, 2012, pp. 2-12.
doi:10.1016/j.jenvrad.2011.09.011
[4]
G. Katata, M. Ota, H. Terada, M. Chino and H. Nagai, “Atmospheric Discharge and Dispersion of Radionuc-lides during the Fukushima Dai-Ichi Nuclear Power Plant Accident. Part I: Source Term Estimation and Lo-cal-Scale Atmospheric Dispersion in Early Phase of the Accident,” Journal of Environment Radioactivity, Vol. 109, 2012, pp. 103-113.
doi:10.1016/j.jenvrad.2012.02.006
[5]
M. Chino, H. Nakayama, H. Nagai, H. Terada, G. Katata and H. Ya-mazawa, “Preliminary Estimation of Release Aounts of 131I and 137Cs Accidentally Discharded from the Fu-kushima Daiichi Nuclear Power Plant into the Atmos-phere, ”Journal of Nuclear Science and Technology, Vol. 48, 2011, pp. 1129-1134.
doi:10.1080/18811248.2011.9711799
[6]
S.-U. Park, “Effects of Dry Deposition on Near-Surface Concentra-tions of SO2 during Medium-Range Transport,” Journal of Applied Meteorology, Vol. 37, 1998, pp.486-496.
doi:10.1175/1520-0450(1998)037<0486:EODDON>2.0.CO;2
[7]
S.-U. Park, A. Choe, E.-H. Lee, M.-S. Park and X. Song, “The Asian Dust Aerosol Model 2 (ADAM2) with the Use of Normalized Difference Ve-getation Index (NDVI) Obtained from the Spot4/Vegetation Data,” Theoretical and Applied Genetics, Vol. 101, 2010, pp. 191-208.
doi:10.1007/s00704-009-0244-4
[8]
D. A. Grell, J. Dudhia, and D. R. Stauffer, “A Description of the 5th Generation Penn State/NCAR Mesoscale Model (MM5), NCAR TECH. Note NCAR/TN-398, p. 117.
[9]
J. Dudhia, D. Grell, Y.-R. Guo, D. Hausen, K. Manning, and W. Wang, “PSU/NCAR Mesoscale Modeling System Tutorial Class Note (MM5 Modeling System Version 2).
[10]
S.-U. Park and H.-J. In, “Parameterization of Dust Emission for the Simulation of the Yellow Sand (Asian dust) Observed in March 2002 in Korea,” Journal of Geophysical Research, Vol. 108, No. D19, 2003, p. 4618.
doi:10.1029/2003JD003484
[11]
S.-U. Park and E.-H. Lee, “Parameterization of Asian Dust (Hwangsa) Particle-Size Distributions for Use in Dust Emission Model,” Atmospheric Environment, Vol. 38, 2004, pp. 2155-2162.
doi:10.1016/j.atmosenv.2004.01.024
[12]
R. A. Pielke, M. Arritt, M. Segal, M. D. Moran and R. T. McNider, “Mesoscale Numerical Modeling of Pollutant Transport in Complex Terrain”, Bound-Layer Meteor, Vol. 41, 1987, pp. 59-74.
doi:10.1007/BF00120431
[13]
R. T. McNider, “Investigation of the Impact of Topographic Circulations on the Transport and Dispersion of Air Pol-lutions,” Ph.D. dissertation, University of Virginia, 1981, p. 195.
[14]
T. Yamada, J. Kao, and S. Bunker, “Airflow and Air Quality Simulations over the Western Mountai-neous Region with a Four-Dimensional Data Assimila-tion Technique,” Atmospheric Environment, Vol.23, 1989, pp.539-554.
doi:10.1016/0004-6981(89)90003-6
[15]
W. L. Physick, and D. J. Abbs, “Modeling of Summertime Flow and Dispersion in the Coastal Terrain of Southeastern Asu-tralia,” Monthly Weather Review, Vol.119, 1991,pp.1014-1030.
doi:10.1175/1520-0493(1991)119<1014:MOSFAD>2.0.CO;2
[16]
F. B. Smith, “Conditioned particle motion in a homogenous turbulent field,” Atmospheric Environ-ment, Vol.2, 1968,pp.491-508.
doi:10.1016/0004-6981(68)90042-5
[17]
B. J. Legg, and M. R. Raupach, “Markov-Chain Si-mulations of Particle Deposition in Homogeneous Flows: The Mean Drift Velocity Induced by a Gradient in Eule-rian Velocity Variance”, Bound.-Layer Meteor, Vol.24, 1982, pp.3-13.
doi:10.1007/BF00121796
[18]
M. L. Wesely, “Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models,” Atmospheric Environment, Vol.23, 1989, pp.1293-1304.
doi:10.1016/0004-6981(89)90153-4
[19]
M. L. Wesely and B. B. Hicks, “Some Factors that Affect the Disper-sion Rates of Sulfur Dioxide and Similar Gases on Ve-getation”, Journal of Air Pollution Control Associa-tion,Vol.27,1977,pp.1110-1116.
doi:10.1080/00022470.1977.10470534
[20]
C. J. Wal-cek, and G. R. Taylor, “A Theoretical Method for Com-puting Vertical Distributions of Acidity and Sulfate Pro-duction within Cumulus Clouds,” J. Atmos. Sci., 43,1986,pp.339-355.
doi:10.1175/1520-0469(1986)043<0339:ATMFCV>2.0.CO;2
[21]
J. S. Chang, R. A. Brost, I. S. A. Isaksen, S. Madronich, P. Middleton, W. R. Stockwell and C. J. Walcek, “A Three-Dimensional Eulerian Acid Deposition Model: Physical Concepts and Formulation,” Journal of Geophysical Research, Vol. 92, 1987, pp. 14681-14700.
doi:10.1029/JD092iD12p14681
[22]
R. L. Dennis, J. N. McHenry, W. R. Barchet, F. S. Binkovski and D. W. Byun, “Correcting RADM’s Sulfate Underprediction: Discovery and Correction of Model Errors and Testing the Corrections through Comparisons against Field Da-ta,” Atmospheric Environment, Vol. 27A, No. 6, 1993, pp. 975-997.
[23]
S. Furuta, S. Sumiya, H. Watanabe, M. Nakano, K. Imaizumi, M. Takeyasu, A. Nakada, H. Fuji-ta, T. Mizutani, M. Morisawa, Y. Kokubun, T. Kono, M. Nagaoka, Y. Hiyama, T. Onuma, C. Kato and T. Kurachi, “Results of the Environmental Radiation Monitoring Following the Accident at the Fukushima Daiichi Nuclear Power Plant,” JAEA-Review, Vol. 035, 2011, p. 89.