[1]
Karimi, A. and MacLean, A. (2005) Replication characteristics of herpes simplex virus type 1 (HSV-1) recombinants in 3 types of tissue cultures. Iranian Biomedical Journal, 9, 95-101.
[2]
Arduino, P.G. and Porter, S.R. (2006) Oral and perioral herpes simplex virus type 1 (HSV-1) infection: Review of its management. Oral Diseases, 12, 254-270.
http://dx.doi.org/10.1111/j.1601-0825.2006.01202.x
[3]
Xu, F., Schillinger, J.A., Sternberg, M.R., Johnson, R.E., Lee, F.K., et al. (2002) Seroprevalence and coinfection with herpes simplex virus type 1 and type 2 in the United States, 1988-1994. The Journal of Infectious Diseases, 185, 1019-1024.
http://dx.doi.org/10.1086/340041
[4]
Pebody, R.G., Andrews, N., Brown, D., Gopal, R., Melker, H.D., et al. (2004) The seroepidemiology of herpes simplex virus type 1 and 2 in Europe. Sexually Transmitted Infections, 80, 185-191.
http://dx.doi.org/10.1136/sti.2003.005850
[5]
Ouyang, Q., Zhao, X., Feng, H., Tian, Y., Li, D., et al. (2012) High GC content of simple sequence repeats in Herpes simplex virus type 1 genome. Gene, 499, 37-40.
http://dx.doi.org/10.1016/j.gene.2012.02.049
[6]
Ellegren, H. (2004) Microsatellites: Simple sequences with complex evolution. Nature Reviews Genetics, 5, 435-445.
http://dx.doi.org/10.1038/nrg1348
[7]
Mirkin, S.M. (2007) Expandable DNA repeats and hu- man disease. Nature, 447, 932-940.
http://dx.doi.org/10.1038/nature05977
[8]
Ramel, C. (1997) Mini- and Microsatellites. Environmental Health Perspectives, 5, 781-789.
[9]
Jurka, J. and Pethiyagoda, C. (1995) Simple repetitive DNA sequences from primates: Compilation and analysis. Journal of Molecular Evolution, 40, 120-126.
http://dx.doi.org/10.1007/BF00167107
[10]
Sutherland, G.R. and Richard, R.L. (1995) Simple tandem DNA repeat and human genetic disease. Proceedings of the National Academy of Sciences, 92, 3636-3641.
http://dx.doi.org/10.1073/pnas.92.9.3636
[11]
Toth, G., Gaspari, Z. and Jurka, J. (2000) Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10, 967-981.
http://dx.doi.org/10.1101/gr.10.7.967
[12]
Mrazek, J., Guo, X.X. and Shah, A. (2007) Simple sequence repeats in prokaryotic genomes. Proceedings of the National Academy of Sciences, 104, 8472-8477.
http://dx.doi.org/10.1073/pnas.0702412104
[13]
Zhao, X., Tian, Y., Yang, R., Feng, H., Ouyang, Q., et al. (2012) Coevolution between simple sequence repeats (SSRs) and virus genome size. BMC Genomics, 13, 435.
http://dx.doi.org/10.1186/1471-2164-13-435
[14]
Mudunuri, S.B. and Nagarajaram, H.A. (2007) IMEx: Imperfect microsatellite extractor. Bioinformatics, 23, 1181-1187.
http://dx.doi.org/10.1093/bioinformatics/btm097
[15]
Rajendrakumar, P., Biswal, A.K., Balachandran, S.M., Srinivasarao, K., Sundaram, R.M., et al. (2007) Simple sequence repeats in organellar genomes of rice: Frequency and distribution in genic and intergenic regions. Bioinformatics, 23, 1-4.
http://dx.doi.org/10.1093/bioinformatics/btl547
[16]
Zhao, X., Tan, Z., Feng, H., Yang, R., Li, M., et al. (2011) Microsatellites in different Potyvirus genomes: Survey and analysis. Gene, 488, 52-56.
http://dx.doi.org/10.1016/j.gene.2011.08.016
[17]
Chen, M., Zeng, G., Tan, Z., Jiang, M., Zhang, J., et al. (2011) Compound microsatellites in complete Escherichia coli genomes. FEBS Letters, 585, 1072-1076.
http://dx.doi.org/10.1016/j.febslet.2011.03.005
[18]
Morgante, M., Hanafey, M. and Powell, W. (2002) Microsatellitesare preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 30, 194- 200.
http://dx.doi.org/10.1038/ng822
[19]
van Lith, H.A. and van Zutphen, L.F. (1996) Characterization of rabbit DNA microsatellites extracted from the EMBL nucleotide sequence database. Animal Genetics, 27, 387-395.
http://dx.doi.org/10.1111/j.1365-2052.1996.tb00505.x
[20]
Marcotte, E.M., Pellegrini, M., Yeates, T.O. and Eisenberg, D. (1999) A census of protein repeats. Journal of Molecular Biology, 293, 151-160.
http://dx.doi.org/10.1006/jmbi.1999.3136
[21]
Bell, G.I. and Jurka, J. (1997) The length distribution of perfect dimer repetitive DNA is consistent with its evolution by an unbiased single-step mutation process. Journal of Molecular Evolution, 44, 414-421.
http://dx.doi.org/10.1007/PL00006161
[22]
Kruglyak, S., Durrett, R.T., Schug, M.D. and Aquadro, C.F. (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proceedings of the National Academy of Sciences, 95, 10774-10778.
http://dx.doi.org/10.1073/pnas.95.18.10774
[23]
Gur-Arie, R., Cohen, C.J., Eitan, Y., Shelef, L., Hallerman, E.M. et al. (2000) Simple sequence repeats in Escherichia coli: Abundance, distribution, composition, and polymorphism. Genome Research, 10, 62-71.
[24]
Mrazek, J. (2006) Analysis of distribution indicates diverse functions of simple sequence repeats in mycoplas-ma genomes. Molecular Biology and Evolution, 23, 1370- 1385.
http://dx.doi.org/10.1093/molbev/msk023
[25]
Fadda, Z., Daros, J.A., Flores, R. and Duran-Vila, N. (2003) Identification in eggplant of a variant of citrus exocortis viroid (CEVd) with a 96 nucleotide duplication in the right terminal region of the rod-like secondary structure. Virus Research, 97, 145-149.
http://dx.doi.org/10.1016/j.virusres.2003.08.002