top
Articles
  • OpenAccess
  • Optimal Control and Bidding Strategy of Virtual Power Plant with Renewable Generation  [CET 2016]
  • DOI: 10.4236/wjet.2016.43D004   PP.27 - 34
  • Author(s)
  • Yuchang Kang, Kwoklun Lo
  • ABSTRACT
  • A Virtual Power Plant (VPP), aggregating the capacities of distributed energy resources (DER) as a single profile, provides presence of DERs in the electricity market. In this paper, a stochastic bidding model is proposed for the VPP to optimise the bids in the day-ahead and balancing market, with the objective to maximise its expected economic profit. The performance of proposed strategy has been assessed in a modified commercial VPP (CVPP) system with wind generation installed, and also the results are compared with the ones achieved from other commonly-used strategies to verify its feasibility.
  • KEYWORDS
  • Virtual Power Plant, Electricity Market, Distributed Energy Resources
  • References
  • [1]
    Renewables 2014 Global Status Report. Renewable Energy Policy Network for the 21st Century (REN21), Paris, Tech. Rep. GSR2014, 2013.
    [2]
    Atzeni, I., Ordóñez, L.G., Scutari, G., Palomar, D.P. and Fonollosa, J.R. (2013) Demand-Side Management via Distributed Energy Generation and Storage Optimization. IEEE Trans. Smart Grid, 4, 866-876.
    http://dx.doi.org/10.1109/TSG.2012.2206060
    [3]
    Farhangi, H. (2010) The Path of the Smart Grid. IEEE Power Energy Mag., 8, 18-28.
    http://dx.doi.org/10.1109/MPE.2009.934876
    [4]
    Lee, D., Kim, J. and Baldick, R. (2013) Stochastic Optimal Control of the Storage System to Limit Ramp Rates of Wind Power Output. IEEE Trans. Smart Grid, 4, 2256-2265.
    http://dx.doi.org/10.1109/TSG.2013.2285524
    [5]
    Pudjianto, D., Ramsay, C., Strbac, G. and Durstewitz, M. (2008) The Virtual Power Plant: Enabling Integration of Distributed Generation and Demand. FENIX Bull, 2.
    http://fenix.iwes.fraunhofer.de/docs/public/2008_02_01_FENIX_bulletin_No_2.pdf
    [6]
    Simoglou, C.K., Biskas, P.N. and Bakirtzis, A.G. (2010) Optimal Selfscheduling of a Thermal Producer in Short-Term Electricity Markets by MILP. IEEE Trans. Power Syst., 25, 1965-1977.
    http://dx.doi.org/10.1109/TPWRS.2010.2050011
    [7]
    Ruiz, C. and Conejo, A.J. (2009) Pool Strategy of a Producer with Endogenous For-mation of Locational Marginal Prices. IEEE Trans. Power Syst., 24, 1855-1866.
    http://dx.doi.org/10.1109/TPWRS.2009.2030378
    [8]
    Kardakos, E.G., Simoglou, C.K. and Bakirtzis, A.G. (2014) Optimal Bidding Strategy in Transmission-Constrained Electricity Markets. Elect. Power Syst. Res., 109, 141-149.
    http://dx.doi.org/10.1016/j.epsr.2013.12.014
    [9]
    Varkani, A.K., Daraeepour, A. and Monsef, H. (2011) A New Self-Scheduling Strategy for Integrated Operation of Wind and Pumped-Storage Power Plants in Power Markets. Appl. Energy, 88, 5002-5012.
    http://dx.doi.org/10.1016/j.apenergy.2011.06.043
    [10]
    Al-Awami, A.T. and El-Sharkawi, M.A. Coordinated Trading of Wind and Thermal Energy. IEEE Trans. Sustain. Energy, 2, 277-287.
    http://dx.doi.org/10.1109/TSTE.2011.2111467
    [11]
    Tascikaraoglu, A., Erdinc, O., Uzu-noglu, M. and Karakas, A. (2014) An Adaptive Load Dispatching and Forecasting Strategy for a Virtual Power Plant including Renewable Energy Conversion Units. Appl. Energy, 119, 445-453.
    http://dx.doi.org/10.1016/j.apenergy.2014.01.020
    [12]
    Pandzic, H., Kuzle, I. and Capuder, T. (2013) Virtual Power Plant Mid-Term Dispatch Optimization. Appl. Energy, 101, 134-141.
    http://dx.doi.org/10.1016/j.apenergy.2012.05.039
    [13]
    Bitar, E.Y., Rajagopal, R., Khargonekar, P.P., Poolla, K. and Varaiya, P. (2012) Bringing Wind Energy to Market. IEEE Trans. Power Syst., 27, 1225-1235.
    http://dx.doi.org/10.1109/TPWRS.2012.2183395
    [14]
    Bouffard, F. and Galiana, F.D. (2008) Stochastic Security for Operations Planning with Significant Wind Power Generation. Proc. IEEE Power Energy Soc. Gen. Meeting Convers. Del. Elect. Energy 21st Century, 1-11.
    http://dx.doi.org/10.1109/pes.2008.4596307
    [15]
    Guo, Y., Gong, Y., Fang, Y. and Khargonekar, P.P. (2014) Stochastic Minimization of Imbalance Cost for a Virtual Power Plant in Electricity Markets. Proc. IEEE PES Innov. Smart Grid Technol. Conf. (ISGT), 1-5.
    http://dx.doi.org/10.1109/isgt.2014.6816372
    [16]
    Peik-Herfeh, M., Seifi, H. and Sheikh-El-Eslami, M. (2013) Decision Making of a Virtual Power Plant under Uncertainties for Bidding in a Day-Ahead Market Using Point Estimate Method. Int. J. Elect. Power Energy Syst., 44, 88-98.
    http://dx.doi.org/10.1016/j.ijepes.2012.07.016
    [17]
    Ackermann, T., et al. (2012) Wind Power in Power Systems. 2nd Edition, Wiley, Hobo-ken.
    http://dx.doi.org/10.1002/9781119941842
    [18]
    N. P. ASA (2004) The Nordic Power Market.
    http://www.fer.unizg.hr/_download/repository/Nord%20Pool%20-%20The%20Nordic%20Power%20Market.pdf
    [19]
    Elia (2016) Belgium’s Electricity Transmission System Operator.
    http://www.elia.be/en/grid-data/power-generation/wind-power
    http://www.elia.be/en/grid-data/Load-and-Load-Forecasts/total-load#01
    [20]
    The Nord Pool.
    http://www.nordpoolspot.com/

Engineering Information Institute is the member of/source content provider to

http://www.scirp.org http://www.hanspub.org/ http://www.crossref.org/index.html http://www.oalib.com/ http://www.ebscohost.com/ http://www.proquest.co.uk/en-UK/aboutus/default.shtml http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&Full=journal%20of%20Bioequivalence%20%26%20Bioavailability http://publishers.indexcopernicus.com/index.php