[1]
Skinner, M.K., Manikkam, M. and Guerrero-Bosagna, C. (2010) Epigenetic Transgenerational Actions of Environmental Factors in Disease Etiology. Trends in Endocrinology & Metabolism, 21, 214-222.
http://dx.doi.org/10.1016/j.tem.2009.12.007
[2]
Doherty, R., Farrelly, C.O. and Meade, K.G. (2014) Comparative Epigenetics: Relevance to the Regulation of Production and Health Traits in Cattle. Animal Genetics, 45, 3-14.
http://dx.doi.org/10.1111/age.12140
[3]
Bhat, A.A., Wani, H.A., Beigh, M.A., Bhat, S.A., Jeelani, S., Massood, A., et al. (2013) Epigenetic Promoter Methylation of hmlh1 Gene in Human Gut Malignancies: A Comparative Study. Journal of Investigational Biochemistry, 2, 101-108.
http://dx.doi.org/10.5455/jib.20130409124009
[4]
Feinberg, A.P. and Tycko, B. (2004) The History of Cancer Epigenetics. Nature Reviews Cancer, 4, 143-153.
http://dx.doi.org/10.1038/nrc1279
[5]
Deakin, J.E., Domaschenz, R., Lim, P.S., Ezaz, T. and Rao, S. (2014) Comparative Epigenomics: An Emerging Field with Breakthrough Potential to Understand Evolution of Epigenetic Regulation. AIMS Genetics, 1, 34-54.
http://dx.doi.org/10.3934/genet.2014.1.34
Wit, E. and McClure, J. (2004) Statistics for Microarrays: Design, Analysis, and Inference. 5th Edition, John Wiley & Sons Ltd., Chichester.
http://dx.doi.org/10.1002/0470011084
[6]
Henrique, R., Luis, A. and Jerónimo, C. (2012) The Epigenetics of Renal Cell Tumors: From Biology to Biomarkers. Frontiers in Genetics, 3, 94.
http://dx.doi.org/10.3389/fgene.2012.00094
Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeologica Della Pineta di san Vitale (Ravenna). Ph.D. Thesis, Bologna University, Bologna.
[7]
Kouzarides, T. (2007) Chromatin Modifications and Their Function. Cell, 128, 693-705.
http://dx.doi.org/10.1016/j.cell.2007.02.005
Honeycutt, L. (1998) Communication and Design Course.
http://dcr.rpi.edu/commdesign/class1.html
[8]
Shi, Y. (2007) Histone Lysine Demethylases: Emerging Roles in Development, Physiology and Disease. Nature Reviews Genetics, 8, 829-833.
http://dx.doi.org/10.1038/nrg2218
[9]
Fraga, M.F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005) Loss of Acetylation at Lys16 and Trimethylation at Lys20 of Histone H4 Is a Common Hallmark of Human Cancer. Nature Genetics, 37, 391-400.
http://dx.doi.org/10.1038/ng1531
[10]
Nguyen, C.T., Weisenberger, D.J., Velicescu, M., Gonzales, F.A., Lin, J.C., Liang, G., et al. (2002) Histone H3-Lysine 9 Methylation Is Associated with Aberrant Gene Silencing in Cancer Cells and Is Rapidly Reversed by 5-Aza-2′- deoxycytidine. Cancer Research, 62, 6456-6461.
[11]
Li, Y., Li, S., Chen, J., Shao, T., Jiang, C., Wang, Y., et al. (2014) Comparative Epigenetic Analyses Reveal Distinct Patterns of Oncogenic Pathways Activation in Breast Cancer Subtypes. Human Molecular Genetics, 23, 5378-5393.
http://dx.doi.org/10.1093/hmg/ddu256
[12]
Langmead, B. and Salzberg, S.L. (2012) Fast Gapped-Read Alignment with Bowtie 2. Nature Methods, 9, 357-359.
http://dx.doi.org/10.1038/nmeth.1923
[13]
Wang, L., Feng, Z., Wang, X., Wang, X. and Zhang, X. (2010) DEGseq: An R Package for Identifying Differentially Expressed Genes from RNA-seq Data. Bioinformatics, 26, 136-138.
http://dx.doi.org/10.1093/bioinformatics/btp612
[14]
Pruitt, K.D., Tatusova, T. and Maglott, D.R. (2007) NCBI Ref-erence Sequences (RefSeq): A Curated Non-Redundant Sequence Database of Genomes, Transcripts and Proteins. Nucleic Acids Research, 35, D61-D65.
http://dx.doi.org/10.1093/nar/gkl842
[15]
Xu, H., Wei, C.-L., Lin, F. and Sung, W.-K. (2008) An HMM Approach to Genome-Wide Identification of Differential Histone Modification Sites from ChIP-seq Data. Bioinformatics, 24, 2344-2349.
http://dx.doi.org/10.1093/bioinformatics/btn402
[16]
DeWoskin, V.A. and Million, R.P. (2013) The Epigenetics Pipeline. Nature Reviews Drug Discovery, 12, 661-662.
http://dx.doi.org/10.1038/nrd4091