top
Articles
  • OpenAccess
  • Oil Pollutants Degradation of Nano-MgO in Micro-Polluted Water  [PTT 2013]
  • DOI: 10.4236/cweee.2013.23B003   PP.12 - 15
  • Author(s)
  • Meng-Fu Zhu, Cheng Deng, Hong-Bo Su, Xiu-Dong You, Lu Zhu, Ping Chen, Ying-Hai Yuan
  • ABSTRACT
  • The removal of oil pollutants from water and purifying process of oil-polluted water are studied through catalytic degradation method with nano-MgO. The results indicated that catalytic degradation effect of nano-MgO on the oil pollutants was associated with dosage of nano-MgO, pH and water temperature. When oil content was 1.8 mg/L, 0.17 g nano-MgO was used and the removal rate of oil was 93.92%. Furthermore, nano-Mgo was a non-photosensitive catalyst. GC/MS analysis showed that the amount of petroleum-based pollutants in water was reduced 73.77% from the previous 61 kinds to 16 kinds, and the total peak area was reduced 96.05% after catalytic degradation of nano-MgO. Therefore, nano-MgO has an excellent effect on the catalytic degradation of oil pollutants and can be applied in the treatment of oil wastewaters.

  • KEYWORDS
  • Nano-MgO; Oil Pollutants; Catalytic Degradation; Micro-Polluted Water; Water Treatment
  • References
  • [1]
    “Drinking Water Sanitary Standard,” GB5749-2006
    [2]
    H. L. Yuan, “Microorganism Screening for Petroleum Degradation and Its Degrading Characteristics,” China Environt Science, Vol. 23, No. 2, 2003, pp. 157-161.
    [3]
    A. Snyder Shane, Westerhoff Paul, Yoon Yeomin, et al., “Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water:Implications for the Water Industry,”Environmental Engineering Science, Vol. 20, No. 5, 2003, pp. 449-469.
    doi:10.1089/109287503768335931
    [4]
    L. Huang, D. Q. Li, Y. J. Lin, et al., “Controllable Preparation of Nano-MgO and Investigation of Its Bactericidal Properties,” Inorganic Bioche, Vol. 99, No. 5, 2005, pp. 986-993.
    doi:10.1016/j.jinorgbio.2004.12.022
    [5]
    S. P. Decker, J. S. Klabunde, A. Khaleel, et al., “Catalyzed Destructive Adsorption of Environmental Toxins with Nanocrystalline Metal Oxides. Fluoro-, Chloro-, Bromo-carbons, Sulfur, and Organophosophorus Compounds,” Environmental Science Technology, Vol. 36, No.4, 2002, pp. 762-768.
    doi:10.1021/es010733z
    [6]
    J. Araña, J. A. Herrera Melián, J. M. Doña Rodriguez, et al., “TiO2-photocatalysis as A Tertiary Treatment of Naturally Treated Wastewater,” Catalysis Today, Vol. 76, No. 2-4, 2002, pp. 279-289.
    doi:10.1016/S0920-5861(02)00226-2

Engineering Information Institute is the member of/source content provider to

http://www.scirp.org http://www.hanspub.org/ http://www.crossref.org/index.html http://www.oalib.com/ http://www.ebscohost.com/ http://www.proquest.co.uk/en-UK/aboutus/default.shtml http://ip-science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&Full=journal%20of%20Bioequivalence%20%26%20Bioavailability http://publishers.indexcopernicus.com/index.php